Lumify Ultrasound System
Contents

1 Read This First ... 11
 Intended Audience .. 12
 Intended Use .. 13
 Warnings ... 14
 Warning Symbols .. 14
 User Information Components ... 15
 User Information Conventions ... 16
 Upgrades and Updates ... 19
 Supplies and Accessories .. 19
 Customer Service ... 20
 Recycling, Reuse, and Disposal ... 20

2 Safety ... 25
 Basic Safety ... 25
 Electrical Safety ... 28
 Defibrillators .. 31
 Fire Safety .. 32
 Equipment Protection .. 33
 Product Compatibility ... 35
 Symbols ... 35
 Biological Safety ... 39
 FDA Medical Alert on Latex ... 41
 ALARA Education Program ... 42
 Output Display .. 46
 Control Effects .. 50
 Related Guidance Documents ... 51
Using the System

4

Contents

System Information... 79

4 Using the System.. 81

Downloading and Installing the Lumify App...................................... 81
Registration and Entitlement... 81
Registering Your Transducers... 82
Giving Lumify Access to Shared Device Storage................................. 83
Updating the Lumify App... 84
Viewing the App Walkthrough.. 84
Canceling Your Subscription... 84
Turning the System On and Off... 85
Setting the System Time and Date.. 86
Setting the Thermal Index Display... 86
Imaging Display... 86
Quick Exams.. 89
 Starting Quick Exams... 89
Using Your Device’s Camera as a Barcode Scanner............................ 91
 Saving Barcode Formats.. 92
 Supported Barcode Formats... 92
Connecting Transducers... 93
Deleting Patient Data and Lumify Settings... 93
Connectivity Profiles.. 93
 Adding a Connectivity Profile... 94
 Editing Connectivity Profiles.. 95
 Switching Connectivity Profiles... 95
Modality Worklist... 96
 Adding a Modality Worklist Server.. 96
 Modifying or Deleting a Modality Worklist Server....................... 97
5 Using Reacts... 99
 Viewing the Reacts Walkthrough.. 100
 Reacts Access Codes... 100
 Redeeming or Sharing Your Reacts Access Codes... 101
 Viewing Your Reacts Access Codes.. 102
 Creating a Reacts Account.. 102
 Logging In and Out of Reacts.. 103
 Managing Reacts Contacts.. 104
 Adding, Removing, and Searching Reacts Contacts... 104
 Reacts Contact Status.. 104
 Responding to Reacts Contact Requests... 105
 Starting a Reacts Session.. 105
 Ending a Reacts Session.. 106
 Using the Reacts Pointer... 106
 Reacts Session Views.. 106
 Rearranging Reacts Session Views... 107
 Showing and Hiding the Reacts Secondary Session Views.. 107
 Muting the Microphone During a Reacts Session.. 108
 Sharing Your Device's Camera.. 108
 Sharing Your Lumify Ultrasound Image.. 109

6 Performing an Exam.. 111
 Starting New Exams.. 111
 Searching in the Worklist.. 113
 Changing Presets During Exams.. 114
 Editing Patient Data.. 114
 Reviewing Saved Exams... 114
 Resuming a Paused Exam.. 115
Imaging Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Mode</td>
<td>116</td>
</tr>
<tr>
<td>Using 2D Mode</td>
<td>116</td>
</tr>
<tr>
<td>Color Mode</td>
<td>117</td>
</tr>
<tr>
<td>Using Color Mode</td>
<td>117</td>
</tr>
<tr>
<td>M-Mode</td>
<td>118</td>
</tr>
<tr>
<td>Using M-Mode</td>
<td>118</td>
</tr>
</tbody>
</table>

Imaging Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoSCAN</td>
<td>119</td>
</tr>
<tr>
<td>Zoom Magnification</td>
<td>119</td>
</tr>
<tr>
<td>Full-Screen View</td>
<td>119</td>
</tr>
<tr>
<td>Displaying a Centerline</td>
<td>120</td>
</tr>
</tbody>
</table>

Acquiring Images

<table>
<thead>
<tr>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquiring Loops</td>
<td>120</td>
</tr>
</tbody>
</table>

Annotation

<table>
<thead>
<tr>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding Labels</td>
<td>121</td>
</tr>
</tbody>
</table>

Measurement and Analysis

<table>
<thead>
<tr>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performing a 2D Distance Measurement</td>
<td>122</td>
</tr>
<tr>
<td>Performing a 2D Ellipse Measurement</td>
<td>123</td>
</tr>
<tr>
<td>Measurement Accuracy</td>
<td>124</td>
</tr>
<tr>
<td>Measurement Accuracy Tables</td>
<td>124</td>
</tr>
<tr>
<td>Performing Fetal Analysis</td>
<td>125</td>
</tr>
</tbody>
</table>

Ending an Exam

<table>
<thead>
<tr>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>126</td>
</tr>
</tbody>
</table>

Review

<table>
<thead>
<tr>
<th>Action</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Review During an Exam</td>
<td>127</td>
</tr>
<tr>
<td>Starting Review After an Exam</td>
<td>127</td>
</tr>
<tr>
<td>Navigating Thumbnails and Images</td>
<td>128</td>
</tr>
<tr>
<td>Viewing the Fetal Age Summary</td>
<td>128</td>
</tr>
<tr>
<td>Playing Loops</td>
<td>128</td>
</tr>
</tbody>
</table>
Contents

Exporting Images and Loops... 129
Deleting Images and Loops... 131
Exporting Exams.. 132
Showing or Hiding Patient Data on Exported Images and Loops... 133
Deleting Exams... 133
Configuring Export Destinations... 134
Export Destination Settings.. 135
Editing Export Destinations... 137
Viewing the Export Queue.. 138
Enabling DICOM Logging.. 138

8 Transducers.. 139
Transducer Safety... 139
Presets and Transducers... 140
Transducer Maintenance.. 140
Acoustic Artifacts.. 141
Transducer Covers.. 144
Ultrasound Transmission Gels.. 145
Transducer Storage.. 146
 Storage for Transport... 146
 Daily and Long-Term Storage.. 146
Testing Transducers.. 147

9 System Maintenance.. 149
Transducer Care.. 149
Device Maintenance... 150
Transducer Maintenance.. 151
Sending System Logs... 151
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing Audit Logs</td>
<td>152</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>152</td>
</tr>
<tr>
<td>Error Messages</td>
<td>154</td>
</tr>
<tr>
<td>Troubleshooting Connectivity Issues</td>
<td>154</td>
</tr>
<tr>
<td>For Assistance</td>
<td>157</td>
</tr>
<tr>
<td>References</td>
<td>159</td>
</tr>
<tr>
<td>Specifications</td>
<td>161</td>
</tr>
<tr>
<td>System Specifications</td>
<td>161</td>
</tr>
<tr>
<td>Safety and Regulatory Requirements</td>
<td>162</td>
</tr>
<tr>
<td>Index</td>
<td>163</td>
</tr>
</tbody>
</table>
1 Read This First

This manual is intended to assist you with the safe and effective operation of your Philips product. Before attempting to operate the product, read this manual and strictly observe all warnings and cautions. Pay special attention to the information in the “Safety” section.

The user information for your Philips product describes the most extensive configuration of the product, with the maximum number of options and accessories. Some functions described may be unavailable on your product's configuration.

Transducers are available only in countries or regions where they are approved. For information specific to your region, contact your local Philips representative.

This document or digital media and the information contained in it is proprietary and confidential information of Philips and may not be reproduced, copied in whole or in part, adapted, modified, disclosed to others, or disseminated without the prior written permission of the Philips Legal Department. This document or digital media is intended to be used either by customers, and is licensed to them as part of their Philips equipment purchase, or to meet regulatory commitments as required by the FDA under 21 CFR 1020.30 (and any amendments to it) and other local regulatory requirements. Use of this document or digital media by unauthorized persons is strictly prohibited.

Philips provides this document without warranty of any kind, implied or expressed, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Philips has taken care to ensure the accuracy of this document. However, Philips assumes no liability for errors or omissions and reserves the right to make changes without further notice to any products herein to improve reliability, function, or design. Philips may make improvements or changes in the products or programs described in this document at any time.

Philips makes no representation or warranty to the user or any other party with respect to the adequacy of this document for any particular purpose or with respect to its adequacy to produce a particular result. The user's right to recover damages caused by fault or negligence on the part of Philips shall be limited to the amount paid by the user to Philips for the provision
of this document. In no event shall Philips be liable for special, collateral, incidental, direct, indirect or consequential damage, losses, costs, charges, claims, demands, or claims for lost profits, data, fees, or expenses of any nature or kind.

Unauthorized copying of this document, in addition to infringing copyright, might reduce the ability of Philips to provide accurate and current information to users.

Non-Philips product names may be trademarks of their respective owners.

CAUTION

United States federal law restricts this device to sale by or on the order of a physician.

Australian Sponsor

Philips Electronics Australia Ltd

65 Epping Road

North Ryde NSW 2113

Australia

Intended Audience

Before you use your user information, you need to be familiar with ultrasound techniques. Sonography training and clinical procedures are not included here.

This document is intended for healthcare professionals who operate and maintain your Philips product.
Intended Use

The Intended Use of the product is to collect ultrasound image data that may be used by clinicians for diagnostic and procedural purposes. The product shall provide the ability for gathering clinically acceptable images and ultrasound data for the clinical presets and anatomies listed in “Indications for Use and Supporting Transducers” on page 73.

This product is intended to be installed, used, and operated only in accordance with the safety procedures and operating instructions given in the product user information, and only for the purposes for which it was designed. However, nothing stated in the user information reduces your responsibility for sound clinical judgment and best clinical procedure.

The Philips Lumify Ultrasound System is intended for diagnostic ultrasound imaging in B (2D), Color Doppler, Combined (B+Color), and M modes. It is indicated for diagnostic ultrasound imaging and fluid flow analysis in the following applications: Fetal/Obstetric, Abdominal, Cephalic, Urology, Gynecological, Cardiac Fetal Echo, Small Organ, Musculoskeletal, Peripheral Vessel, Carotid, Cardiac.

Lumify is a transportable ultrasound system intended for use in environments where healthcare is provided by healthcare professionals.

WARNING

Do not use the system for purposes other than those intended and expressly stated by Philips. Do not misuse the system, and do not use or operate the system incorrectly.

Installation, use, and operation of this product are subject to the law in the jurisdictions in which the product is used. Install, use, and operate the product only in such ways that do not conflict with applicable laws or regulations, which have the force of law.

Use of the product for purposes other than those intended and expressly stated by Philips, as well as incorrect use or operation, may relieve Philips or its agents from all or some responsibility for resultant noncompliance, damage, or injury.
WARNING
System users are responsible for image quality and diagnosis. Inspect the data that is being used for the analysis and diagnosis, and ensure that the data is sufficient both spatially and temporally for the measurement approach being used.

Warnings
Before using the system, read these warnings and the “Safety” section.

WARNING
Do not operate this system in the presence of flammable gases or anesthetics. Explosion can result. The system is not compliant in AP/APG environments as defined by IEC 60601-1.

WARNING
Medical equipment must be installed and put into service according to the special electromagnetic compatibility (EMC) guidelines provided in the “Safety” section.

WARNING
The use of portable and mobile radio-frequency (RF) communications equipment can affect the operation of medical equipment.

Warning Symbols
The system uses various warning symbols. For symbols used on the system, see “Symbols” on page 35.
User Information Components

The user information provided with your product includes the following components:

- **User Information CD**: Includes all of the user information, except the *Operating Notes*.
- **Operating Notes**: Contains information that clarifies certain product responses that might be misunderstood or cause user difficulty.
- **Care and Cleaning of Ultrasound Systems and Transducers**: Provided with the product and included on the CD. Describes care and cleaning procedures for your ultrasound system and transducers.
- **Disinfectants and Cleaning Solutions for Ultrasound Systems and Transducers**: Provided with the product and included on the CD. Provides information about compatible cleaning and disinfecting products for your ultrasound system and transducers.
- **User Manual**: Provided with the product and included on the CD. The *User Manual* introduces you to features and concepts, helps you set up your system, contains comprehensive instructions for using the system and includes important safety information.
- **Quick Guide**: Provided with the product and included on the CD. The *Quick Guide* outlines basic features and step-by-step instructions for common functions.
- **Acoustic Output Tables**: Included on the CD, it contains information about acoustic output and patient-applied part temperatures.
- **Medical Ultrasound Safety**: Included on the CD, it contains information on bioeffects and biophysics, prudent use, and implementing ALARA (as low as reasonably achievable).
- **Shared Roles for System and Data Security**: Included on the CD, it contains guidelines to help you understand security recommendations for your Philips product and information on Philips' efforts to help you prevent security breaches.

Some user information is also available on the **Support** section of the Lumify website:

www.philips.com/lumify
User Information Conventions

The user information for your product uses the following typographical conventions to assist you in finding and understanding information:

- All procedures are numbered, and all subprocedures are lettered. You must complete steps in the sequence they are presented to ensure success.
- Bulleted lists indicate general information about a particular function or procedure. They do not imply a sequential procedure.
- Control names and menu items or titles are spelled as they are on the system, and they appear in bold text.
- Symbols appear as they appear on the system.
- *Select* means to touch an object on the display to "highlight" the object (such as an item in a list), or in the case of a check box or when selecting options, to fill the object. *Deselect* means touching the item to remove the highlight or fill.
- *System* and *ultrasound system* refer to the combination of a Philips transducer, the Philips Lumify app, and a compatible Android device.
- *Device* refers to a Lumify-compatible Android device.
- *Operating system* refers to the Android operating system.

The following touch gestures are used to control your system.
Touch Gestures

<table>
<thead>
<tr>
<th>Gesture</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drag</td>
<td>Touch the screen with a finger and move the finger across the screen without lifting the finger.</td>
</tr>
<tr>
<td></td>
<td>Double-tap</td>
<td>Touch the screen briefly twice with the same finger.</td>
</tr>
<tr>
<td></td>
<td>Pinch</td>
<td>Touch the screen with two fingers and move them toward each other.</td>
</tr>
<tr>
<td></td>
<td>Touch</td>
<td>Touch a control with your finger.</td>
</tr>
</tbody>
</table>
Gesture Conventions

<table>
<thead>
<tr>
<th>Gesture</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Touch and hold</td>
<td>Touch the screen for a short time without moving your finger.</td>
</tr>
<tr>
<td></td>
<td>Spread</td>
<td>Touch the screen with two fingers and move them apart.</td>
</tr>
<tr>
<td></td>
<td>Swipe</td>
<td>Touch the screen with your finger and move the finger in a quick motion right, left, up, or down.</td>
</tr>
</tbody>
</table>

Information that is essential for the safe and effective use of your product appears throughout your user information as follows:

WARNING

Warnings highlight information vital to the safety of you, the operator, and the patient.
CAUTION
Cautions highlight ways that you could damage the product and consequently void your warranty or service contract or ways that you could lose patient or system data.

NOTE
Notes bring your attention to important information that will help you operate the product more effectively.

Upgrades and Updates
Philips is committed to innovation and continued improvement. Upgrades may be announced that consist of hardware or software improvements. Updated user information will accompany those upgrades.

For more information, see “Updating the Lumify App” on page 84.

Supplies and Accessories
To order supplies and accessories, visit the Lumify website (www.philips.com/lumify), or contact CIVCO Medical Solutions:

CIVCO Medical Solutions
102 First Street South, Kalona, IA 52247-9589
Telephone: 800-445-6741 (USA and Canada), +1 319-248-6757 (International)
Fax: 877-329-2482 (USA and Canada), +1 319-248-6660 (International)
E-mail: info@civco.com
Internet: www.civco.com
System Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables</td>
<td>See “Approved Cables for Electromagnetic Compliance” on page 61.</td>
</tr>
<tr>
<td>Transducers</td>
<td>See “Presets and Transducers” on page 140.</td>
</tr>
</tbody>
</table>

Customer Service

Customer service representatives are available worldwide to answer questions and to provide maintenance and service. Please contact your local Philips representative for assistance. You can also visit the Lumify website or contact the following office for referral to a customer service representative:

www.philips.com/lumify

Philips Ultrasound, Inc.

22100 Bothell Everett Hwy, Bothell, WA 98021-8431, USA

Recycling, Reuse, and Disposal

Philips is concerned with helping protect the natural environment and helping ensure continued safe and effective use of this system through proper support, maintenance, and training. Philips designs and manufactures equipment in compliance with relevant guidelines for environmental protection. As long as the equipment is properly operated and maintained, it presents no risk to the environment. However, the equipment may contain materials that could be harmful to the environment if disposed of incorrectly. Use of such materials is essential for the implementation of certain functions and for meeting certain statutory and other requirements.
The European Union Directive on Waste Electrical and Electronic Equipment (WEEE) requires producers of electrical and electronic equipment to provide reuse and treatment information for each product. This information is provided in a Philips Recycling Passport. Such recycling passports for Philips ultrasound systems are available on this website: www.healthcare.philips.com/main/about/sustainability/recycling/ultrasound.wpd

Recycling, reuse, and disposal information in this document is directed mainly at the entity with legal authority over the equipment. Operators are usually uninvolved in disposal, except in the case of certain batteries.

Passing Your Transducer to Another User

If you purchased the transducer outright and you pass it to another user who will use the transducer for its intended purpose, then pass it on in its complete state. Particularly, ensure that all the product-support documentation, including all instructions for use, are passed on to the new user. Make the new user aware of the support services that Philips provides for maintaining the transducer, and for comprehensive operator training, as well as final disposal of the transducer at the end of its useful life. Existing users must remember that passing on medical electrical equipment to new users may present serious technical, medical, privacy, and legal risks. The original user may remain liable, even if the equipment is given away.

Philips strongly advises you to seek advice from your local Philips representative before agreeing to pass on any equipment.

After you pass the transducer to a new user, you might still receive important safety-related information, such as bulletins and field change orders. In many jurisdictions the original owner has a clear duty to communicate such safety-related information to new users. If you are unable or unprepared to do this, inform Philips about the new user, so that Philips can provide the new user with safety-related information.

Final Disposal of Your Device
If you are subscribing to the transducer, at the end of your Lumify subscription, you must return your transducer or transducers to Philips. Do not dispose of the transducers. For more information, see the Support section of the Lumify website:

www.philips.com/lumify

If you purchased the transducer outright, Philips gives support for the following:

- Recovery of useful transducer parts
- Recycling of useful transducer materials by competent disposal companies
- Safe and effective disposal of transducer

For advice and information, contact your Philips service organization, or see the following website:

www.healthcare.philips.com/us/about/sustainability/recycling

Final disposal of your device is when you dispose of the device in such a way that it can no longer be used for its intended purpose.

For information on proper disposal of your device, see the documentation that accompanies your device.

WARNING

Do not dispose of the device (or any parts of it) with industrial or domestic waste. The system may contain materials such as lead, tungsten, or oil, or other hazardous substances that can cause serious environmental pollution. The device also contains privacy-sensitive information, which should be properly removed (scrubbed). Philips advises you to contact your Philips service organization before disposing of this system.

Discarding Batteries

Batteries are internal to the device. The device should be discarded in an environmentally safe manner. Properly dispose of the device according to local regulations.
WARNING

Do not disassemble, puncture, or incinerate batteries. Be careful not to short the battery terminals, because that could result in a fire hazard.

WARNING

Use caution when handling, using, and testing the batteries. Do not short circuit, crush, drop, mutilate, puncture, apply reverse polarity, expose to high temperatures, or disassemble. Misuse or abuse could cause physical injury.

WARNING

If electrolyte leakage occurs, wash your skin with large amounts of water, to prevent skin irritation and inflammation.
2 Safety

Please read this information before using your ultrasound system. It applies to the device, the transducers, and the software. This section covers general safety information only. Safety information that applies only to a specific task is included in the procedure for that task.

The combination of a Philips transducer, the Philips Lumify app, and a compatible Android device is considered a medical device. This device is intended for use by, or by the order of, and under the supervision of a licensed physician qualified to direct the use of the device.

Report any serious safety incident that occurs in relation to the ultrasound system to Philips and to the competent authority of the country in which the user and patient are established.

WARNING

Warnings highlight information vital to the safety of you, the operator, and the patient.

CAUTION

Cautions highlight ways that you could damage the product and consequently void your warranty or service contract or ways that you could lose patient or system data.

Basic Safety

WARNING

Do not use the system for any application until you have read, understood, and know all the safety information, safety procedures, and emergency procedures contained in this "Safety" section. Operating the system without a proper awareness of safe use could lead to fatal or other serious personal injury.
WARNING

If any part of the system is known or suspected to be defective or incorrectly adjusted, do not use the system until it is repaired. Operating the system with defective or incorrectly adjusted components could expose you and the patient to safety hazards.

WARNING

The transducers have small, detachable parts that pose a choking hazard, and the transducer cable is a strangulation hazard. Do not leave children unattended with the system.

WARNING

Do not use the system for any application until you are adequately and properly trained on its safe and effective operation. If you are unsure of your ability to operate the system safely and effectively, do not use it. Operation of the system without proper and adequate training could lead to fatal or other serious personal injury.

WARNING

Do not operate the system with patients unless you have an adequate understanding of its capabilities and functions. Using the system without such understanding may compromise the system's effectiveness and the safety of the patient, you, and others.

WARNING

Never attempt to remove, modify, override, or frustrate any safety device on the system. Interfering with safety devices could lead to fatal or other serious personal injury.
WARNING
Use the system only for its intended purposes. Do not misuse the system. Do not use the system with any product that Philips does not recognize as compatible with the system. Operation of the product for unintended purposes, or with incompatible products, could lead to fatal or other serious injury.

WARNING
Stop use immediately if the system or the transducer appear to be malfunctioning. Contact your Philips representative immediately.

WARNING
You are responsible for configuring your device in accordance with your institution's security policies. Notifications and alerts from third-party applications may interfere with an exam.

WARNING
Thin needles can bend when entering tissue. Actual position must be verified by identifying the echoes from the needle.

WARNING
Do not perform a needle procedure if the needle is not visible.
WARNING

Reverberation or other tissue artifacts may produce false needle images, which can cause confusion in locating the actual needle image. Ensure that you are not using a false needle image to locate the needle.

Electrical Safety

The transducer and software, along with a representative device, have been verified as compliant with IEC 60601-1. The transducers meet Type BF isolated applied part requirements. When the transducer and software are used in conjunction with a device compliant with IEC 60950-1, the system meets IEC 60601-1 requirements for internally powered equipment. (The safety standards met by this system are included in the “Specifications” section.) For maximum safety, observe these warnings and cautions:

WARNING

Devices that are compliant with IEC 60950-1 have not been evaluated for compliance with the IEC 60601-1 temperature limits for patient contact. Therefore, only the operator is allowed to handle the device.

WARNING

Do not operate this system in the presence of flammable gases or anesthetics. Explosion can result. The system is not compliant in AP/APG environments as defined by IEC 60601-1.

WARNING

To avoid risk of electrical shock hazards, always inspect the transducer before use. Check the face, housing, and cable before use. Do not use if the face is cracked, chipped, or torn; the housing is damaged; or the cable is abraded.
WARNING

All patient-contact devices, such as transducers, pencil probes, and ECG leads not specifically indicated as defibrillation-proof, must be removed from patient contact before application of a high-voltage defibrillation pulse. See “Defibrillators” on page 31.

WARNING

Ultrasound equipment in normal operation, as with other medical electronic diagnostic equipment, uses high-frequency electrical signals that can interfere with pacemaker operation. Though the possibility of interference is slight, be alert to this potential hazard and stop system operation immediately if you note interference with a pacemaker.

WARNING

When using additional peripheral equipment that is to be interconnected by functional connection, the combination is considered to be a medical electrical system. It is your responsibility to comply with IEC 60601-1 and test the system to those requirements. If you have questions, contact your Philips representative.

WARNING

Patient-applied parts meet the standard IEC 60601-1. Applied voltages exceeding the standard, although unlikely, may result in electrical shock to the patient or operator.

WARNING

Connection of optional devices not supplied by Philips could result in electrical shock. When such optional devices are connected to your ultrasound system, ensure that the total system earth leakage current does not exceed 500 µA.
WARNING
To avoid risk of electrical shock, do not use any transducer that has been immersed beyond the specified cleaning or disinfection level.

WARNING
Electrosurgical units (ESUs) and other devices intentionally introduce radio frequency electromagnetic fields or currents into patients. Because imaging ultrasound frequencies are coincidentally in the radio frequency range, ultrasound transducer circuits are susceptible to radio frequency interference. While an ESU is in use, severe noise interferes with the black-and-white image and completely obliterates the color image.

WARNING
To avoid risk of a burn hazard, do not use transducers with high-frequency surgical equipment. A burn hazard may result from a defect in the high-frequency surgical neutral electrode connection.

WARNING
Using cables, transducers, and accessories other than those specified for use with the system may result in increased emissions from, or decreased immunity of, the system.
CAUTION
Use of the system in the presence of an electromagnetic field can cause momentary degradation of the ultrasound image. When interference is present or intermittent, use caution when continuing to use the system. If interference occurs often, review the environment in which the system is being used to identify possible sources of radiated emissions. These emissions could be from other electrical devices used within the same room or an adjacent room. Communication devices such as cellular phones and pagers can cause these emissions. The existence of radio, TV, or microwave transmission equipment located nearby can cause emissions. In cases where EMI is causing disturbance, it may be necessary to relocate your system.

CAUTION
For information on electromagnetic emissions and immunity as it applies to the system, see “Electromagnetic Compatibility” on page 58. Ensure that the operating environment of your system meets the conditions specified in the referenced information. Operating the system in an environment that does not meet those conditions may degrade system performance.

Defibrillators
Observe the following warnings when a defibrillation is required while using the ultrasound system.

WARNING
Before defibrillation, always remove all patient-applied parts from the patient.
WARNING

Before defibrillation, always disconnect invasive transducers that remain in contact with the patient from the system.

WARNING

A disposable transducer cover provides no protective electrical insulation against defibrillation.

WARNING

A small hole in the outer layer of the transducer opens a conductive path to grounded metal parts of the transducer. The secondary arcing that could occur during defibrillation could cause patient burns. The risk of burns is reduced, but not eliminated, by using an ungrounded defibrillator.

Use defibrillators that do not have grounded patient circuits. To determine whether a defibrillator patient circuit is grounded, see the defibrillator service guide, or consult a biomedical engineer.

Fire Safety

Fire safety depends on fire prevention, isolating the cause, and extinguishing the fire. If you see evidence of smoke or fire, disconnect system power. Observe the following warnings when using the system.
WARNING

On electrical or chemical fires, use only extinguishers that are specifically labeled for those purposes. Using water or other liquids on an electrical fire can lead to fatal or other serious personal injury. Before attempting to fight a fire, if it is safe to do so, attempt to isolate the product from electrical and other supplies, to reduce the risk of electrical shock.

WARNING

Use of electrical products in an environment for which they were not designed can lead to fire or explosion. Fire regulations for the type of medical area being used should be fully applied, observed, and enforced. Fire extinguishers should be available for both electrical and nonelectrical fires.

Equipment Protection

Follow these precautions to protect your system:

WARNING

If the system or transducers have been in an environment above 40°C (104°F), allow them to cool to operating temperature before turning on the system or connecting the transducers. Do not allow the transducer to contact the patient if the temperature of the transducer is higher than 43°C (109°F). Allow 25 minutes for the transducer to cool. If the transducers were only briefly exposed to temperatures above 40°C (104°F), then the time required for the devices to return to operating temperature could be less than 25 minutes.
CAUTION

If the system or transducers have been in an environment below 0°C (32°F), allow them to reach operating temperature before turning on the system or connecting the transducers. Allow 20 minutes for the transducers to warm to operating temperature. Otherwise, condensation inside the devices could cause damage. If the transducers were only briefly exposed to temperatures below 0°C (32°F), then the time required for the devices to return to operating temperature could be less than 20 minutes.

CAUTION

Excessive bending or twisting of cables on patient-applied parts may cause failure or intermittent operation of the system.

CAUTION

In general, only the area of the transducer acoustic window is liquid-tight. Except where specified in specific transducer-cleaning instructions, do not immerse the remainder of a transducer in any liquid.

CAUTION

Do not submerge the transducer connector in solution. The cables and transducer bodies are liquid-tight, but the connectors are not.

CAUTION

Do not use abrasive cleaners, or acetone, MEK, paint thinner, or other strong solvents on the system, peripherals, or transducers.
Product Compatibility

Do not use your system in combination with other products or components, unless Philips expressly recognizes those other products or components as compatible. For information about such products and components, contact your Philips representative.

Changes and additions to the system should be made only by Philips or by third parties expressly authorized by Philips to do so. Such changes and additions must comply with all applicable laws and regulations that have the force of law within the jurisdictions concerned, and best engineering practices.

WARNING

System changes and additions that are made without the appropriate training or by using unapproved spare parts may void the warranty. As with all complex technical products, maintenance by unqualified persons or using unapproved spare parts carries serious risks of system damage and personal injury.

Symbols

The International Electrotechnical Commission (IEC) has established a set of symbols for medical electronic equipment that classify a connection or warn of potential hazards. Of those symbols, the following may be used on your product and its accessories and packaging.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA federal law restricts this device to sale by or on the order of a physician.</td>
<td></td>
</tr>
</tbody>
</table>

Rx only

Isolated patient connection (Type BF applied part).
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Identifies a caution.</td>
</tr>
<tr>
<td></td>
<td>Indicates that the user should see the instructions for use for safety information.</td>
</tr>
<tr>
<td></td>
<td>Connection for a transducer</td>
</tr>
<tr>
<td></td>
<td>System microphone</td>
</tr>
<tr>
<td></td>
<td>USB input/output port</td>
</tr>
<tr>
<td></td>
<td>CSA (CSA International) classification symbol.</td>
</tr>
<tr>
<td></td>
<td>Nonionizing electromagnetic radiation. Indicates that interference may occur in the vicinity of equipment marked with this symbol (YY 0505). This symbol is required only when a system contains wireless capabilities.</td>
</tr>
<tr>
<td></td>
<td>Indicates conformance with European Council Directive 93/42/EEC.</td>
</tr>
<tr>
<td></td>
<td>EU Authorized Representative</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>IP47</td>
<td>Indicates that the equipment inside the enclosure is protected against ingress of solid foreign objects having a diameter of 1.0 mm and greater. Indicates that the device is protected against the effects of immersion. This degree of protection can apply to transducers and foot-operated devices.</td>
</tr>
<tr>
<td></td>
<td>Indicates the need for separate collection for electrical and electronic equipment in compliance with the Waste Electrical and Electronic Equipment (WEEE) Directive. When accompanied by ⚭ or ⚫, components of the device may contain lead or mercury, respectively, which must be recycled or disposed of in accordance with local, state, or federal laws. The backlight lamps in an LCD system monitor contain mercury.</td>
</tr>
<tr>
<td></td>
<td>Do not throw away. Dispose of in accordance with local, state, or federal laws.</td>
</tr>
<tr>
<td>GMDN</td>
<td>Global Medical Device Nomenclature Code</td>
</tr>
<tr>
<td>GTIN</td>
<td>Global Trade Item Number</td>
</tr>
<tr>
<td>MOD</td>
<td>Model name for the device.</td>
</tr>
<tr>
<td></td>
<td>Identifies the date of manufacture.</td>
</tr>
<tr>
<td></td>
<td>Identifies the legal manufacturer.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>This side up: Points toward the side of the shipping crate that should be kept facing up.</td>
</tr>
<tr>
<td></td>
<td>Indicates that the device should be kept dry.</td>
</tr>
<tr>
<td></td>
<td>Indicates that the device is fragile; handle with care.</td>
</tr>
<tr>
<td></td>
<td>Do not use if damaged.</td>
</tr>
<tr>
<td></td>
<td>Keep away from sunlight.</td>
</tr>
<tr>
<td></td>
<td>Non-sterile.</td>
</tr>
<tr>
<td></td>
<td>Catalog number.</td>
</tr>
<tr>
<td></td>
<td>Batch code.</td>
</tr>
</tbody>
</table>
Biological Safety

This section contains information about biological safety and a discussion of the prudent use of the system.

A list of precautions related to biological safety follows; observe these precautions when using the system. For more information, see *Medical Ultrasound Safety* on your *User Information* CD.

WARNING

Do not use the system if an error message on the display indicates that a hazardous condition exists. Note the error code, turn off power to the system, and call your customer service representative.

WARNING

Do not use a system that exhibits erratic or inconsistent image updating. Discontinuities in the scanning sequence indicate a hardware failure that must be corrected before use.
WARNING
Perform ultrasound procedures prudently. Use the ALARA (as low as reasonably achievable) principle.

WARNING
Use only acoustic standoffs that have been approved by Philips. For information on ordering approved accessories, see “Supplies and Accessories” on page 19.

WARNING
Transducer covers may contain natural rubber latex. Those covers may cause allergic reactions in some individuals. See “FDA Medical Alert on Latex” on page 41.

WARNING
If a sterile transducer cover becomes compromised during an intraoperative application involving a patient with transmissible spongiform encephalopathy, such as Creutzfeldt-Jakob disease, follow the guidelines of the U.S. Centers for Disease Control and this document from the World Health Organization: WHO/CDS/ APH/2000/3, WHO Infection Control Guidelines for Transmissible Spongiform Encephalopathies. The transducers for your system cannot be decontaminated using a heat process.

WARNING
If the system becomes contaminated internally with bodily fluids carrying pathogens, you must immediately notify your Philips service representative. Components inside the system cannot be disinfected. In that case, the system must be disposed of as biohazardous material in accordance with local or federal laws.
WARNING
Select the correct application when starting an exam, and remain in that application throughout the exam. Some applications are for parts of the body that require lower limits for acoustic output.

FDA Medical Alert on Latex
March 29, 1991, Allergic Reactions to Latex-Containing Medical Devices

Because of reports of severe allergic reactions to medical devices containing latex (natural rubber), the FDA is advising health care professionals to identify their latex sensitive patients and be prepared to treat allergic reactions promptly. Patient reactions to latex have ranged from contact urticaria to systemic anaphylaxis. Latex is a component of many medical devices, including surgical and examination gloves, catheters, intubation tubes, anesthesia masks, and dental dams.

Reports to the FDA of allergic reactions to latex-containing medical devices have increased lately. One brand of latex cuffed enema tips was recently recalled after several patients died as a result of anaphylactoid reactions during barium enema procedures. More reports of latex sensitivity have also been found in the medical literature. Repeated exposure to latex both in medical devices and in other consumer products may be part of the reason that the prevalence of latex sensitivity appears to be increasing. For example, it has been reported that 6% to 7% of surgical personnel and 18% to 40% of spina bifida patients are latex sensitive.

Proteins in the latex itself appear to be the primary source of the allergic reactions. Although it is not now known how much protein is likely to cause severe reactions, the FDA is working with manufacturers of latex-containing medical devices to make protein levels in their products as low as possible.

FDA’s recommendations to health professionals in regard to this problem are as follows:

• When taking general histories of patients, include questions about latex sensitivity. For surgical and radiology patients, spina bifida patients and health care workers, this recommendation is especially important. Questions about itching, rash or wheezing after wearing latex gloves or inflating a toy balloon may be useful. Patients with positive histories should have their charts flagged.
• If latex sensitivity is suspected, consider using devices made with alternative materials, such as plastic. For example, a health professional could wear a non-latex glove over the latex glove if the patient is sensitive. If both the health professional and the patient are sensitive, a latex middle glove could be used. (Latex gloves labeled “Hypoallergenic” may not always prevent adverse reactions.)

• Whenever latex-containing medical devices are used, especially when the latex comes in contact with mucous membranes, be alert to the possibility of an allergic reaction.

• If an allergic reaction does occur and latex is suspected, advise the patient of a possible latex sensitivity and consider an immunologic evaluation.

• Advise the patient to tell health professionals and emergency personnel about any known latex sensitivity before undergoing medical procedures. Consider advising patients with severe latex sensitivity to wear a medical identification bracelet.

The FDA is asking health professionals to report incidents of adverse reactions to latex or other materials used in medical devices. (See the October 1990 FDA Drug Bulletin.) To report an incident, contact the FDA Problem Reporting Program, MedWatch, at 1-800-332-1088, or on the Internet:

www.fda.gov/Safety/MedWatch/

For a single copy of a reference list on latex sensitivity, write to: LATEX, FDA, HFZ-220, Rockville, MD 20857.

NOTE

The transducers described in this document do not contain natural rubber latex that contacts humans. Natural rubber latex is not used on any Philips ultrasound transducer.

ALARA Education Program

The guiding principle for the use of diagnostic ultrasound is defined by the "as low as reasonably achievable" (ALARA) principle. The decision as to what is reasonable has been left to the judgment and insight of qualified personnel. No set of rules can be formulated that would
be sufficiently complete to dictate the correct response to every circumstance. By keeping ultrasound exposure as low as possible, while obtaining diagnostic images, users can minimize ultrasonic bioeffects.

Since the threshold for diagnostic ultrasound bioeffects is undetermined, it is the sonographer’s responsibility to control total energy transmitted into the patient. The sonographer must reconcile exposure time with diagnostic image quality. To ensure diagnostic image quality and limit exposure time, an ultrasound system provides controls that can be manipulated during the exam to optimize the results of the exam.

The ability of the user to abide by the ALARA principle is important. Advances in diagnostic ultrasound, not only in the technology but in the applications of that technology, have resulted in the need for more and better information to guide the user. The output display indices are designed to provide that important information.

There are a number of variables which affect the way in which the output display indices can be used to implement the ALARA principle. These variables include index values, body size, location of the bone relative to the focal point, attenuation in the body, and ultrasound exposure time. Exposure time is an especially useful variable, because it is controlled by the user. The ability to limit the index values over time supports the ALARA principle.

Applying ALARA

The system imaging mode used depends upon the information needed. 2D imaging provides anatomical information, while Color imaging provides information about blood flow. Understanding the nature of the imaging mode being used allows the sonographer to apply the ALARA principle with informed judgment. Additionally, the transducer frequency, system setup values, scanning techniques, and operator experience allow the sonographer to meet the definition of the ALARA principle.

The decision as to the amount of acoustic output is, in the final analysis, up to the system operator. This decision must be based on the following factors: type of patient, type of exam, patient history, ease or difficulty of obtaining diagnostically useful information, and the potential localized heating of the patient due to transducer surface temperatures. Prudent use of the system occurs when patient exposure is limited to the lowest index reading for the shortest amount of time necessary to achieve acceptable diagnostic results.
Although a high index reading does not mean that a bioeffect is actually occurring, a high index reading should be taken seriously. Every effort should be made to reduce the possible effects of a high index reading. Limiting exposure time is an effective way to accomplish this goal.

There are several system controls that the operator can use to adjust the image quality and limit the acoustic intensity. These controls are related to the techniques that an operator might use to implement ALARA. These controls can be divided into three categories: direct, indirect, and receiver controls.

Acoustic Output Limits

This ultrasound system maintains acoustic output below the appropriate limits for each application, as listed here. The significant difference in magnitude emphasizes the need to select the correct application and remain in that application, so the correct application limits are in use for the appropriate application.

Limits for Non-Ophthalmic Applications

- $I_{spta.3} \leq 720 \text{ mW/cm}^2$
- $MI \leq 1.9$
- $TI \leq 6.0$

Direct Controls

Application selection and the output-power control directly affect acoustic intensity. There are different ranges of allowable intensity or output based on your selection. Selecting the correct range of acoustic intensity for the application is one of the first things that occurs in any exam. For example, peripheral vascular intensity levels are not recommended for fetal exams. Some systems automatically select the proper range for a particular application, while others require manual selection. Ultimately, the user has the responsibility for proper clinical use. The ultrasound system provides both automatic (default) settings and manual (user-selectable) settings.
Output power has direct impact on acoustic intensity. Once the application has been established, the power control can be used to increase or decrease the intensity output. The power control allows you to select intensity levels less than the established maximum. Prudent use dictates that you select the lowest output intensity that is consistent with good image quality.

Indirect Controls

The indirect controls are those that have an indirect effect on acoustic intensity. These controls affect imaging mode, pulse repetition frequency, focus depth, pulse length, and transducer selection.

The choice of imaging mode determines the nature of the ultrasound beam. 2D is a scanning mode; Doppler is a stationary or unscanned mode. A stationary ultrasound beam concentrates energy in a single location. A moving or scanned ultrasound beam disperses the energy over an area and the beam is concentrated on the same area for a fraction of the time as that of an unscanned mode.

Focus of the ultrasound beam affects the image resolution. To maintain or increase resolution at a different focus requires a variation in output over the focal zone. This variation of output is a function of system optimization. Different exams require different focal depths. Setting the focus at the proper depth improves the resolution of the structure of interest.

Transducer selection indirectly affects intensity. Tissue attenuation changes with frequency. The higher the transducer operating frequency, the greater the attenuation of the ultrasonic energy. A higher transducer operating frequency requires more output intensity to scan at a deeper depth. To scan deeper at the same output intensity, a lower transducer frequency is required. Using more gain and output beyond a point, without corresponding increases in image quality, can mean that a lower frequency transducer is needed.

Receiver Controls

Receiver controls are used by the operator to improve image quality. These controls have no effect on output. Receiver controls only affect how the ultrasound echo is received. These controls include gain, time gain compensation (TGC), dynamic range, and image processing. The
important thing to remember, relative to output, is that receiver controls should be optimized before output is increased. For example, before increasing output, optimize gain to improve image quality.

An Example of Applying the ALARA Principle

An ultrasound scan of a patient’s liver begins with selecting the appropriate transducer frequency. After selecting the transducer and the application, which are based on patient anatomy, adjustments to output power should be made to ensure that the lowest possible setting is used to acquire an image. After the image is acquired, adjusting the focus of the transducer, and then increasing the receiver gain to produce a uniform representation of the tissue follows. If an adequate image can be obtained with the increase in gain, then a decrease in output should be made. Only after making these adjustments should you increase output to the next level.

Having acquired the 2D display of the liver, Color can be used to localize blood flow. As with the 2D image display, gain and image processing controls must be optimized before increasing output.

In summary: Select the correct transducer frequency and application for the job; start with a low output level; and optimize the image by using focus, receiver gain, and other imaging controls. If the image is not diagnostically useful at this point, then increase output.

Additional Considerations

Ensure that scanning time is kept to a minimum, and ensure that only medically required scanning is performed. Never compromise quality by rushing through an exam. A poor exam may require a follow-up, which ultimately increases exposure time. Diagnostic ultrasound is an important tool in medicine, and like any tool, it should be used efficiently and effectively.

Output Display

The system output display comprises two basic indices: a mechanical index and a thermal index. The mechanical index is continuously displayed over the range of 0.0 to 1.9, in increments of 0.1.
The thermal index further consists of the following indices: soft tissue (TIS), bone (TIB), and cranial bone (TIC). Only one of these is displayed at any time. Each transducer application has a default selection that is appropriate for that combination. The TIB, TIS, or TIC is continuously displayed over the range of 0.0 to maximum output, based on the transducer and application, in increments of 0.1. For the location of the output display, see “Imaging Display” on page 86.

The application-specific nature of the default setting is also an important factor of index behavior. A default setting is a system control state that is preset by the manufacturer or the operator. The system has default index settings for the transducer application. The default settings are invoked automatically by the ultrasound system when power is turned on, when new patient data is entered into the system database, or when an application change occurs.

The decision as to which of the three thermal indices to display should be based on the following criteria:

- Appropriate index for the application: TIS is used for imaging soft tissue, TIB for a focus at or near bone, and TIC for imaging through bone near the surface, as in a cranial exam.
- Mitigating factors that might create artificially high or low thermal index readings: location of fluid or bone, or blood flow. For example, is there a highly attenuating tissue path so that the actual potential for local zone heating is less than the thermal index displays?
- Scanned modes versus unscanned modes of operation affect the thermal index. For scanned modes, heating tends to be near the surface; for unscanned modes, the potential for heating tends to be deeper in the focal zone.
- Always limit ultrasound exposure time. Do not rush the exam. Ensure that the indices are kept to a minimum and that exposure time is limited without compromising diagnostic sensitivity.

Mechanical Index (MI) Display

Mechanical bioeffects are threshold phenomena that occur when a certain level of output is exceeded. The threshold level varies, however, with the type of tissue. The potential for mechanical bioeffects varies with peak rarefactional pressure and ultrasound frequency. The MI accounts for these two factors. The higher the MI value, the greater the likelihood of
mechanical bioeffects occurring. There is no specific MI value that means that a mechanical
effect is actually occurring. The MI should be used as a guide for implementing the ALARA
principle.

Thermal Index (TI) Displays

The TI informs the user about the conditions that exist that might lead to an increase in
temperature at the surface of the body, within the body tissue, or at the point of focus of the
ultrasound beam on bone. That is, the TI informs the user of the potential for temperature rise
in body tissue. It is an estimate of temperature increase in body tissue with specific properties.
The actual amount of any temperature rise is influenced by factors such as tissue type,
vascularity, mode of operation, and others. The TI should be used as a guide for implementing
the ALARA principle.

The bone thermal index (TIB) informs the user about potential heating at or near the focus after
the ultrasound beam has passed through soft tissue or fluid; for example, at or near second- or
third-trimester fetal bone.

The cranial bone thermal index (TIC) informs the user about the potential heating of bone at or
near the surface; for example, cranial bone.

The soft tissue thermal index (TIS) informs the user about the potential for heating within soft
homogeneous tissue.

You can choose to display TIS, TIC, or TIB. For details on changing the TI display, see “Setting the
Thermal Index Display” on page 86.

Mechanical and Thermal Indices Display Precision and Accuracy

The MI and TI precision is 0.1 unit on the system.

The MI and TI display accuracy estimates for the system are given in *Acoustic Output Tables*, on
your *User Information* CD. Those accuracy estimates are based on the variability range of
transducers and systems, inherent acoustic output modeling errors, and measurement
variability, as discussed in this section.

The displayed values should be interpreted as relative information to help the system operator
achieve the ALARA principle through prudent use of the system. The values should not be
interpreted as actual physical values in interrogated tissue or organs. The initial data that is
used to support the output display is derived from laboratory measurements based on the measurement standards in IEC 62359: Test Methods for the Determination of Thermal and Mechanical Indices Related to Medical Diagnostic Ultrasonic Fields. The measurements are then put into algorithms for calculating the displayed output values.

Many of the assumptions used in the process of measurement and calculation are conservative in nature. Overestimation of actual in situ intensity exposure, for the vast majority of tissue paths, is built into the measurement and calculation process. For example:

- The measured water tank values are derated using a conservative, industry standard, attenuation coefficient of 0.3 dB/cm-MHz.
- Conservative values for tissue characteristics were selected for use in the TI models. Conservative values for tissue or bone absorption rates, blood perfusion rates, blood heat capacity, and tissue thermal conductivity were selected.
- Steady State temperature rise is assumed in the industry standard TI models, and the assumption is made that the ultrasound transducer is held steady in one position long enough for steady state to be reached.

A number of factors are considered when estimating the accuracy of the displayed values: hardware variations, estimation algorithm accuracy, and measurement variability. Variability among transducers and systems is a significant factor. Transducer variability results from piezoelectric crystal efficiencies, process-related impedance differences, and sensitive lens-focusing parameter variations. Differences in system pulser voltage control and efficiencies is also a contributor to variability. There are inherent uncertainties in the algorithms used to estimate acoustic output values over the range of possible system operating conditions and pulser voltages. Inaccuracies in laboratory measurements are related to, among others, differences in hydrophone calibration and performance, positioning, alignment, and digitization tolerances, and variability among test operators.

The conservative assumptions of the output estimation algorithms of linear propagation, at all depths, through a 0.3 dB/cm-MHz attenuative medium is not considered in the accuracy estimate for the display. Neither linear propagation, nor uniform attenuation at the 0.3 dB/cm-MHz rate, occur in water tank measurements or in most tissue paths in the body. In the body, different tissues and organs have dissimilar attenuation characteristics. In water, there is almost no attenuation. In the body, and in particular, in water tank measurements, nonlinear propagation and saturation losses occur as pulser voltages increase.
Therefore, the display accuracy estimates are based on the variability range of transducers and systems, inherent acoustic output modeling errors, and measurement variability. Display accuracy estimates are not based on errors in, or caused by measuring according to, the IEC 62359 measurement standards, or the effects of nonlinear loss on the measured values.

Control Effects

Controls Affecting the Indices

As various system controls are adjusted, the TI and MI values may change. This will be most apparent as the output power control is adjusted; but other system controls affect the on-screen output values.

Power

The output power control affects the system acoustic output. Two real-time output values are on the display: TI and MI. They change as the system responds to power-control adjustments.

In combined modes, such as simultaneous Color and 2D, the individual modes each add to the total TI. One mode will be the dominant contributor to this total. The displayed MI will be from the mode with the largest MI value.

2D Controls

- **Focus**: Changing the focal depth will change MI. Generally, higher MI values will occur when the focal depth is near the natural focus of the transducer.

- **Zoom**: Increasing the zoom magnification by spreading the display may increase frame rate. This action will increase the TI. The number of focal zones may also increase automatically to improve resolution. This action may change the MI, because the peak MI can occur at a different depth.

Color Controls

- **Color Sector Width**: Narrower color sector width will increase color frame rate and the TI will increase. The system may automatically decrease pulser voltage to stay below the system maximum. A decrease in pulser voltage will decrease the MI.
• **Color Sector Depth:** Deeper color sector depth may automatically decrease color frame rate or select a new color focal zone or color pulse length. The TI will change due to the combination of these effects. Generally, the TI will decrease with increased color sector depth. MI will correspond to the MI of the dominant pulse type which is a color pulse.

Other Control Effects

• **2D Depth:** An increase in 2D depth will automatically decrease the 2D frame rate. This will decrease the TI. The system may also automatically choose a deeper 2D focal depth. A change of focal depth may change the MI. The MI displayed is that of the zone with the largest MI value.

• **Application:** Acoustic output defaults are set when you select an application. Factory defaults vary with transducer, application, and mode. Defaults have been chosen below the FDA limits for intended use.

• **Imaging Mode Controls:** When a new imaging mode is selected, both the TI and MI may change to default settings. Each mode has a corresponding pulse repetition frequency and maximum intensity point. In combined or simultaneous modes, the TI is the sum of the contribution from the modes enabled, and the displayed MI is the largest of the MI values associated with each mode and focal zone enabled. The system will return to the previously selected state if a mode is turned off and then reselected.

• **Transducer:** Each transducer type has unique specifications for contact area, beam shape, and center frequency. Defaults are initialized when you select a transducer. Factory defaults vary with transducer, application, and selected mode. Defaults have been chosen below the FDA limits for intended use.

Related Guidance Documents

For more information about ultrasonic bioeffects and related topics, see the following:

• Third Edition of the AIUM "Medical Ultrasound Safety" document, 2014. (A copy of this
document is provided with each system.)

• "Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound

• IEC 62359: Ultrasonics - Field Characterization - Test Methods for the Determination of
Thermal and Mechanical Indices Related to Medical Diagnostic Ultrasonic Fields.

• WFUMB. "Symposium on Safety of Ultrasound in Medicine: Conclusions and
Recommendations on Thermal and Non-Thermal Mechanisms for Biological Effects of

Acoustic Output and Measurement

Since the initial use of diagnostic ultrasound, the possible human bioeffects from ultrasound
exposure have been studied by various scientific and medical institutions. In October 1987, the
American Institute of Ultrasound in Medicine (AIUM) ratified a report prepared by its Bioeffects
Committee ("Bioeffects Considerations for the Safety of Diagnostic Ultrasound." *Journal of
Ultrasound in Medicine*, Vol. 7, No. 9 Supplement, September 1988), sometimes referred to as
the Stowe Report, which reviewed available data on possible effects of ultrasound exposure.
Another report, “Bioeffects and Safety of Diagnostic Ultrasound,” dated January 28, 1993,
provides more-current information.

The acoustic output for this system has been measured and calculated in accordance with IEC
62359: Ultrasonics - Field Characterization - Test Methods for the Determination of Thermal
and Mechanical Indices Related to Medical Diagnostic Ultrasonic Fields, and the September
2008 FDA document "Information for Manufacturers Seeking Marketing Clearance of Diagnostic
Ultrasound Systems and Transducers."

In Situ, Derated, and Water Value Intensities

All intensity parameters are measured in water. Since water absorbs very little acoustic energy,
these water measurements represent a worst case value. Biological tissue does absorb acoustic
energy. The true value of the intensity at any point depends on the amount and type of tissue
and the frequency of the ultrasound that passes through the tissue. The intensity value in the
tissue, *In Situ*, has been estimated by using the following formula:
In Situ = Water \[e^{0.23a_lf}\]

Where:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Situ</td>
<td>In Situ intensity value</td>
</tr>
<tr>
<td>Water</td>
<td>Water value intensity</td>
</tr>
<tr>
<td>e</td>
<td>2.7183</td>
</tr>
<tr>
<td>a</td>
<td>Attenuation factor</td>
</tr>
<tr>
<td>Tissue</td>
<td>a(dB/cm-MHz)</td>
</tr>
<tr>
<td>Amniotic Fluid</td>
<td>0.006</td>
</tr>
<tr>
<td>Brain</td>
<td>0.53</td>
</tr>
<tr>
<td>Heart</td>
<td>0.66</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.79</td>
</tr>
<tr>
<td>Liver</td>
<td>0.43</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.55</td>
</tr>
<tr>
<td>l</td>
<td>Skin line to measurement depth (cm)</td>
</tr>
<tr>
<td>f</td>
<td>Center frequency of the transducer/system/mode combination (MHz)</td>
</tr>
</tbody>
</table>

Since the ultrasonic path during an examination is likely to pass through varying lengths and types of tissue, it is difficult to estimate the true in situ intensity. An attenuation factor of 0.3 is used for general reporting purposes; therefore, the In Situ value which is commonly reported uses the formula:

\[\text{In Situ derated} = \text{Water} \left[e^{0.069lf}\right]\]

Since this value is not the true in situ intensity, the term “derated” is used.
Mathematical derating of water based measurements using the 0.3 dB/cm-MHz coefficient may yield lower acoustic exposure values than would be measured in a homogenous 0.3 dB/cm-MHz tissue. This is true because nonlinearly propagating acoustic energy waveforms experience more distortion, saturation, and absorption in water than in tissue, where attenuation present all along the tissue path will dampen the buildup of nonlinear effects.

The maximum derated and the maximum water values do not always occur at the same operating conditions; therefore, the reported maximum water and derated values may not be related by the \textit{in situ} (derated) formula. For example: A multi-zone array transducer that has maximum water value intensities in its deepest zone may have its largest derated intensity in one of its shallowest focal zones.

Conclusions Regarding Tissue Models and Equipment Survey

Tissue models are necessary to estimate attenuation and acoustic exposure levels \textit{in situ} from measurements of acoustic output made in water. Presently, available models may be limited in their accuracy because of varying tissue paths during diagnostic ultrasound exposures and uncertainties in acoustical properties of soft tissues. No single tissue model is adequate for predicting exposures in all situations from measurements made in water, and continued improvement and verification of these models is necessary for making exposure assessments for specific applications.

A homogeneous tissue model with an attenuation coefficient of 0.3 dB/cm-MHz throughout the beam path is commonly used when estimating exposure levels. The model is conservative in that it overestimates the \textit{in situ} acoustic exposure when the path between the transducer and the site of interest is composed entirely of soft tissue, because the attenuation coefficient of soft tissue is generally higher than 0.3 dB/cm-MHz. When the path contains significant amounts of fluid, as in many first- and second-trimester pregnancies scanned transabdominally, this model may underestimate the \textit{in situ} acoustical exposure. The amount of underestimation depends on each specific situation. For example, when the beam path is longer than 3 cm and the propagation medium is predominantly fluid (conditions that may exist during transabdominal OB scans), a more accurate value for the derating term is 0.1 dB/cm-MHz.
Fixed-path tissue models, in which soft tissue thickness is held constant, sometimes are used to estimate in situ acoustical exposures when the beam path is longer than 3 cm and consists largely of fluid. When this model is used to estimate maximum exposure to the fetus during transabdominal scans, a value of 1 dB/cm-MHz may be used during all trimesters.

The maximum acoustic output levels of diagnostic ultrasound devices extend over a broad range of values:

- A survey of 1990-equipment models yielded mechanical index (MI) values between 0.1 and 1 at their highest output settings. Maximum MI values of approximately 2 are known to occur for currently available equipment. Maximum MI values are similar for real-time 2D, M-mode, PW Doppler, and Color flow imaging.

- Computed estimates of upper limits to temperature elevations during transabdominal scans were obtained in a survey of 1988 and 1990 PW Doppler equipment. The vast majority of models yielded upper limits less than 1°C and 4°C for exposures of first-trimester fetal tissue and second-trimester fetal bone, respectively. The largest values obtained were approximately 1.5°C for first-trimester fetal tissue and 7°C for second-trimester fetal bone. Estimated maximum temperature elevations given here are for a “fixed-path” tissue model and are for devices having Ispta (derated) values greater than 500 mW/cm². The temperature elevations for fetal bone and tissue were computed based on calculation procedures given in Sections 4.3.2.1 through 4.3.2.6 in "Bioeffects and Safety of Diagnostic Ultrasound" (AIUM Report, January 28, 1993).

Acoustic Output Tables

Acoustic output tables are in *Acoustic Output Tables*, on your User Information CD.

Acoustic Measurement Precision and Uncertainty

All table entries have been obtained at the same operating conditions that give rise to the maximum index value in the first column of the tables. Measurement precision and uncertainty for power, pressure, intensity, and center frequency are listed in the following tables.
NOTE
Per ISO/IEC Guide 98-3 (Uncertainty of Measurement - Part 3: Guide to the Expression of Uncertainty in Measurement), measurement precision on the following quantities is determined by making repeated measurements and stating the standard deviation as a percentage.

Acoustic Measurement Precision

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Precision (Percentage Standard Deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr is the underated peak rarefactional pressure measured in megapascals (MPa).</td>
<td>Pr: 5.4%</td>
</tr>
<tr>
<td>P is the ultrasonic power in milliwatts (mW).</td>
<td>6.2%</td>
</tr>
<tr>
<td>f_{swf} is the center frequency in megahertz (MHz).</td>
<td><1%</td>
</tr>
<tr>
<td>PII.3 is the derated spatial-peak pulse intensity integral in joules per square centimeter (J/cm2).</td>
<td>PII.3: 3.2%</td>
</tr>
</tbody>
</table>

Acoustic Measurement Uncertainty

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Measurement Uncertainty (Percentage, 95% Confidence Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr is the underated peak rarefactional pressure measured in megapascals (MPa).</td>
<td>Pr: ±11.3%</td>
</tr>
<tr>
<td>P is the ultrasonic power in milliwatts (mW).</td>
<td>±10%</td>
</tr>
<tr>
<td>f_{swf} is the center frequency in megahertz (MHz).</td>
<td>±4.7%</td>
</tr>
<tr>
<td>PII.3 is the derated spatial-peak pulse intensity integral in joules per square centimeter (J/cm2).</td>
<td>PII.3: +18% to -23%</td>
</tr>
</tbody>
</table>
Operator Safety

The following issues and situations can affect operator safety when you are using an ultrasound system.

Repetitive Strain Injury

Repetitive ultrasound scanning has been associated with carpal tunnel syndrome (CTS) and related musculoskeletal problems. Some investigators have looked at a large population of sonographers with different types of equipment. An article, with feedback from a smaller geographical area, makes the following recommendations:

- Maintain your joints in optimum positions with a balanced posture while scanning.
- Allow frequent breaks to give soft tissue a chance to recuperate from awkward positions and repetitive movement.
- Avoid gripping the transducer with excessive force.

Repetitive Strain References

Philips Transducers

Use only transducers that are approved by Philips for use with your Philips ultrasound system. For a list of the transducers that are compatible with your ultrasound system, see “Presets and Transducers” on page 140.
Glutaraldehyde Exposure

The United States Occupational Safety and Health Administration (OSHA) has issued a regulation covering levels of acceptable glutaraldehyde exposure in the working environment. Philips does not sell glutaraldehyde-based disinfectants with its products, but this type of disinfectant is recommended for the disinfection of transducers used in TEE, intraoperative, endocavity, and biopsy procedures.

To reduce the presence of glutaraldehyde fumes in the air, be sure to use a covered or ventilated soaking basin. Such systems are commercially available.

Infection Control

Issues related to infection control affect the operator and the patient. Follow the infection-control procedures established in your facility for the protection of both the staff and the patient.

Removing Blood and Infectious Material from the System

It is important to clean and maintain the ultrasound system and peripherals. If the equipment has come in contact with blood or infectious material, clean and disinfect the system and peripherals according to the instructions in the “System Maintenance” section.

Disposable Drape

If you believe contamination of the system might occur during an exam, take universal precautions and cover the system with a disposable drape. Consult your facility's rules regarding equipment use in the presence of infectious disease.

Electromagnetic Compatibility

Electromagnetic compatibility (EMC) is defined as the ability of a product, a device, or a system to function satisfactorily in the presence of the electromagnetic phenomena that exists in the location of the product, the device, or the system being used; and, in addition, to not introduce intolerable electromagnetic disturbances to anything in that same environment.
Electromagnetic immunity is the ability of a product, a device, or a system to function satisfactorily in the presence of electromagnetic interference (EMI).

Electromagnetic emissions is the ability of a product, a device, or a system to introduce intolerable electromagnetic disturbances into the use environment.

Your system has been manufactured in compliance with existing electromagnetic compatibility requirements. Use of this system in the presence of an electromagnetic field can cause momentary degradation of the image quality. If this occurs often, review the environment in which the system is being used to identify possible sources of radiated emissions. These emissions could be from other electrical devices used within the same room or an adjacent room, or from portable and mobile RF communications equipment such as cellular phones and pagers, or from the existence of radio, TV, or microwave transmission equipment located nearby. In cases where electromagnetic interference (EMI) is causing disturbances, it may be necessary to relocate your system.

The transducer and representative Android device are classified as Group 1, Class B equipment in accordance with international standard CISPR 11 for radiated and conducted electromagnetic disturbances. Compliance with this standard allows the system to be used in all establishments, including domestic establishments and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes.

WARNING

Using cables, transducers, or accessories other than those specified for use with the system may result in increased emissions or decreased immunity of the system.

CAUTION

Medical equipment has special precautions regarding EMC and must be installed and put into service according to the EMC information provided in the system’s accompanying documents.
This section includes information on electromagnetic emissions and immunity as it applies to the system. Ensure that the operating environment of your system meets the conditions specified in the referenced information. Operating the system in an environment that does not meet these conditions may degrade system performance.

The information and warnings contained in this and other sections should be observed when installing and using the system to ensure its EMC.

NOTE
See the other electrical-safety warnings and cautions in this section.

Electrostatic Discharge Precautions

Electrostatic discharge (ESD), commonly referred to as a static shock, is a naturally occurring phenomenon that results in the flow of an electrical charge from a higher charged object or person to a lower charged object or person. ESD is most prevalent during conditions of low humidity, which can be caused by heating or air-conditioning. During low humidity conditions, electrical charges naturally build up on individuals and objects and can create static discharges.

The following cautions can help to reduce ESD effect:

CAUTION

The following precautions can help to reduce ESD: anti-static spray on carpets; anti-static spray on linoleum; anti-static mats; or a ground wire connection between the system and the patient table or bed.
CAUTION

On connectors labeled with the ESD sensitivity symbol ▲, do not touch the connector pins, and always observe the preceding ESD precautions when handling or connecting transducers.

Electromagnetic Emissions

The system is intended for use in the electromagnetic environment specified in the table. The customer or the user of the system should ensure that it is used in such an environment.

Electromagnetic Emissions: Environment Guidance

<table>
<thead>
<tr>
<th>Emissions Test</th>
<th>Compliance</th>
<th>Electromagnetic Environment Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF emissions, CISPR 11</td>
<td>Group 1</td>
<td>The system uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.</td>
</tr>
<tr>
<td>RF emissions, CISPR 11</td>
<td>Class B</td>
<td>The system is suitable for use in all establishments, including domestic establishments and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes.</td>
</tr>
<tr>
<td>Harmonic emissions, IEC 61000-3-2</td>
<td>Class A</td>
<td></td>
</tr>
<tr>
<td>Voltage fluctuations/flicker emissions, IEC 61000-3-3</td>
<td>Complies</td>
<td></td>
</tr>
</tbody>
</table>

Approved Cables for Electromagnetic Compliance

Cables connected to the system may affect its emissions. Use only the cable types and lengths listed here.
WARNING

Using cables, transducers, or accessories other than those specified for use with the system may result in increased emissions or decreased immunity of the system.

Approved Cables

<table>
<thead>
<tr>
<th>Cable</th>
<th>Length</th>
<th>Philips Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transducer Cable (C5-2, L12-4, S4-1)</td>
<td>1.25 m (4 ft)</td>
<td>453561806942</td>
</tr>
<tr>
<td>USB Micro-B Transducer Cable (C5-2, L12-4, S4-1)</td>
<td>1.75 m (5.7 ft)</td>
<td>453561871781</td>
</tr>
<tr>
<td>USB-C Transducer Cable (C5-2, L12-4, S4-1)</td>
<td>1.75 m (5.7 ft)</td>
<td>453561854691</td>
</tr>
</tbody>
</table>

Approved Transducers for Electromagnetic Compliance

The imaging transducers used with the system may affect its emissions. The transducers listed in “Presets and Transducers” on page 140, when used with the system, have been tested to comply with the Group 1, Class B emissions, as required by international standard CISPR 11. Use only those transducers.

WARNING

Using cables, transducers, or accessories other than those specified for use with the system may result in increased emissions or decreased immunity of the system.

Approved Accessories for Electromagnetic Compliance

Accessories used with the system may affect its emissions. The accessories listed here, when used with the system, have been tested to comply with the Group 1, Class B emissions as required by international standard CISPR 11. Use only the accessories listed here.
When connecting other accessories to the system, such as a printer or computer, it is the user's responsibility to ensure the electromagnetic compatibility of the system. Use only CISPR 11 or CISPR-22, Class B-compliant devices, unless otherwise noted.

WARNING
Using cables, transducers, or accessories other than those specified for use with the system may result in increased emissions or decreased immunity of the system.

CAUTION
Use only Class-B USB storage devices with the system. Some plastic-cased unshielded USB devices may cause RF emissions that exceed Class-B limits. See the device’s documentation to determine whether it is Class-B compliant.

Approved Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Manufacturer</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasonic imaging transducer</td>
<td>Philips</td>
<td>Use only the transducers listed in “Presets and Transducers” on page 140.</td>
</tr>
</tbody>
</table>

Electromagnetic Immunity
The system is intended for use in the electromagnetic environment specified here. The customer or the user of the system should ensure that it is used in such an environment.
CAUTION
Cables, transducers, and accessories connected to the system may affect its immunity to the electromagnetic phenomena listed here. Use only approved accessories, cables, and transducers to minimize the chance of performance degradation of the system due to those types of electromagnetic phenomena.

NOTE
The guidelines specified here may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

NOTE
At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

Electromagnetic Immunity: Environment Guidance

<table>
<thead>
<tr>
<th>Immunity Test</th>
<th>IEC 60601 Test Level</th>
<th>Compliance Level</th>
<th>Electromagnetic Environment Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD), IEC 61000-4-2</td>
<td>8 kV air discharge, 6 kV contact discharge</td>
<td>8 kV air discharge, 6 kV contact discharge</td>
<td>Floors should be wood, concrete, or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.</td>
</tr>
<tr>
<td>Electrical fast transient/burst, IEC 61000-4-4</td>
<td>Not applicable. The device does not function on AC power</td>
<td>- -</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Immunity Test</td>
<td>IEC 60601 Test Level</td>
<td>Compliance Level</td>
<td>Electromagnetic Environment Guidance</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Surge, IEC 61000-4-5</td>
<td>Not applicable. The device does not function on AC power</td>
<td>- -</td>
<td>Mains power quality should be that of a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Voltage dips, short interruptions, and voltage variations on power supply input lines, IEC 61000-4-11</td>
<td>Not applicable. The device does not function on AC power</td>
<td>- -</td>
<td>Mains power quality should be that of a typical commercial or hospital environment. If you require continued operation during power mains interruptions, Philips recommends that the system be powered from an uninterruptible power supply or a battery.</td>
</tr>
<tr>
<td>Power frequency (50/60 Hz) magnetic field, IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.</td>
</tr>
<tr>
<td>Conducted RF, IEC 61000-4-6</td>
<td>3 VRMS</td>
<td>3 VRMS</td>
<td>For recommended separation distances, see “Recommended Separation Distance” on page 68.</td>
</tr>
<tr>
<td>Radiated RF, IEC 61000-4-3</td>
<td>3 V/m</td>
<td>3 V/m</td>
<td>For recommended separation distances, see “Recommended Separation Distance” on page 68.</td>
</tr>
</tbody>
</table>
Although most remote devices comply with their applicable standards for immunity, those device requirements may not be as stringent as those required for medical equipment. It is the responsibility of the installer and the user of this remote customer-supplied equipment to ensure that it functions properly in the electromagnetic environment where the system is installed. The installer or the user of such a system should consult with experts in the field of electromagnetic compatibility and safety for guidance to ensure the safe and effective use of the created system.

Electromagnetic Interference

Electromagnetic interference may appear in many ways on the system and depends on the mode the equipment is operating in, the imaging control settings, the type of transducer being used, the type of electromagnetic phenomena, and the intensity level of the phenomena.

WARNING

If electromagnetic interference is present or intermittent, use caution when continuing to use the system.

NOTE

Electromagnetic phenomena are not always present and may be transitory in nature. It may be extremely difficult to identify the source of the interference.

The following table describes a few typical interferences seen in imaging systems. It is impossible to describe all manifestations of interference, because it depends on many parameters of the transmitting device, such as the type of modulation used by the signal carrier, the source type, and the transmitted level. It is also possible for the interference to degrade the imaging system's performance and not be visible in the image. If the diagnostic results are suspicious, other means should be used to confirm the diagnosis.
Typical Interference on Ultrasonic Imaging Systems

<table>
<thead>
<tr>
<th>Imaging Mode</th>
<th>ESD<sup>1</sup></th>
<th>RF<sup>2</sup></th>
<th>Power Line<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Change of operating mode, system settings, or system reset. Brief flashes in the displayed or recorded image.</td>
<td>For sector imaging transducers, white radial bands or flashes in the center lines of the image. For linear imaging transducers, white vertical bands, sometimes more pronounced on the sides of the image.</td>
<td>White dots, dashes, or diagonal lines near the center of the image.</td>
</tr>
<tr>
<td>Color</td>
<td>Change of operating mode, system settings, or system reset. Brief flashes in the displayed or recorded image.</td>
<td>Color flashes, radial or vertical bands, increase in background noise, or changes in image color.</td>
<td>Color flashes, dots, dashes, or changes in the color noise level.</td>
</tr>
<tr>
<td>M-mode</td>
<td>Change of operating mode, system settings, or system reset. Brief flashes in the displayed or recorded image.</td>
<td>Increase in the image background noise or white M-mode lines.</td>
<td>White dots, dashes, diagonal lines, or increase in image background noise.</td>
</tr>
</tbody>
</table>

1. Electrostatic discharge (ESD) caused by discharging of electric charge buildup on insulated surfaces or persons.

2. Radio frequency (RF) energy from RF transmitting equipment such as portable phones, handheld radios, wireless devices, commercial radio and TV stations, and so on.

3. Conducted interference on power lines or connected cables caused by other equipment, such as switching power supplies, electrical controls, and natural phenomena such as lightning.
Recommended Separation Distance

The following table provides recommended separation distances, which are guidelines on the distances that any RF transmitting equipment should be kept away from the ultrasound system to reduce the risk of interference with the system. Portable and mobile RF communications equipment should be used no closer to any part of the system, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter. Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range as noted in the table. Interference may occur in the vicinity of equipment marked with the following symbol: 📤.

Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast, and TV broadcast, cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the system is used exceeds the applicable RF compliance level in the table, the system should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the system.

NOTE

At 80 MHz and 800 MHz, the higher frequency range applies.

NOTE

The recommended separation distance guidelines in the following table may not apply to all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.
The information provided here, in conjunction with “Electromagnetic Interference” on page 66, provides guidance on conducted and radiated interference from portable and fixed RF transmitting equipment.

Recommended Separation Distances by Transmitter Frequency

<table>
<thead>
<tr>
<th>Rated Maximum Output Power of Transmitter (Watts)</th>
<th>150 kHz to 80 MHz</th>
<th>80 to 800 MHz</th>
<th>800 MHz to 2.5 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.35 m (13.8 in)</td>
<td>0.12 m (4.7 in)</td>
<td>0.23 m (9.1 in)</td>
</tr>
<tr>
<td>0.1</td>
<td>1.1 m (3.6 ft)</td>
<td>0.38 m (15 in)</td>
<td>0.73 m (28.7 in)</td>
</tr>
<tr>
<td>1</td>
<td>3.5 m (11.5 ft)</td>
<td>1.2 m (3.9 ft)</td>
<td>2.3 m (7.5 ft)</td>
</tr>
<tr>
<td>10</td>
<td>11 m (36.1 ft)</td>
<td>3.8 m (12.5 ft)</td>
<td>7.3 m (24 ft)</td>
</tr>
<tr>
<td>100</td>
<td>35 m (114.8 ft)</td>
<td>12 m (39.4 ft)</td>
<td>23 m (75.5 ft)</td>
</tr>
</tbody>
</table>

Ultrasound systems can be sensitive to RF interference in the transducer passband. For example, for a 5-MHz imaging transducer, the frequency range of interference from a 3-V/m field may be from 2 to 10 MHz and manifest itself as described in “Electromagnetic Interference” on page 66.

As an example, if a portable transmitter has maximum radiated power of 1 W and an operating frequency of 156 MHz, it should only be operated at distances greater than 1.2 m (3.9 ft) from the system. Likewise, a 0.01-W Bluetooth wireless LAN device operating at 2.4 GHz should be placed no closer than 0.24 m (9.5 in) from any part of the system.

Avoiding Electromagnetic Interference

A medical device can either generate or receive electromagnetic interference. The EMC standards describe tests for both emitted and received interference. Emission tests deal with interference generated by the device being tested. The ultrasound system does not generate interference based on the tests described in the referenced standards.
An ultrasound system is designed to receive signals at radio frequencies and is therefore susceptible to interference generated by RF energy sources. Examples of other sources of interference are medical devices, information technology products, and radio and television transmission towers. Tracing the source of radiated interference can be a difficult task. Customers should consider the following in an attempt to locate the source:

- Is the interference intermittent or constant?
- Does the interference show up only with one transducer or with several transducers?
- Do two different transducers operating at the same frequency have the same problem?
- Is the interference present if the system is moved to a different location in the facility?
- Can the EMC coupling path be attenuated? For example, placement of a transducer or printer close to an ECG cable can increase electromagnetic interference. Moving the cable or other medical equipment away from the location of the transducer or printer can result in reduced electromagnetic interference.

The answers to these questions will help determine if the problem resides with the system or the scanning environment. After you answer the questions, contact your Philips service representative.

Use Restrictions Due to Interference

The physician must determine if an artifact caused by radiated interference will have a negative impact on image quality and the subsequent diagnosis.
3 System Overview

Use this section to acquaint yourself with the ultrasound system and its components.

Device Requirements

WARNING

Using the Lumify app on a device that does not meet the minimum specification may result in poor image quality, unexpected results, and possible misdiagnosis.

For a list of devices that Philips has tested and determined to be compatible with the Lumify app, visit the Lumify website:
www.philips.com/Lumify-Compatible-Devices

Although Philips cannot guarantee that the Lumify app will work on a device that is not on the list of compatible devices, these are the minimum device specifications. Your device must meet all of the following specifications:

- Minimum 50 MB of storage space (plus more for patient data storage)
- Color display, minimum 14 cm (5.5 in)
- Touch interface
- Internally mounted speakers
- IEC 60950-1-compliant
- Date/time configuration
- Full compliance with USB On-The-Go standard
- 1280 x 800 resolution (minimum)
- For Lumify without Reacts, Android 5.0 or later operating system
• For Lumify with Reacts, Android 6.0 or later operating system
• NVIDIA Tegra 3, Intel Atom Z3580 CPU, or faster equivalent
• Wireless or cellular networking capability
• Access to ports 80 and 443
• Audio capability
• Front- and rear-facing cameras

1Philips verifies that the devices in the Lumify Tablet Compatibility table on the Lumify website (www.philips.com/Lumify-Compatible-Devices) comply with the USB On-The-Go standard.

2Required to use certain system features, such as the barcode scanner and Reacts live video and camera collaboration.

System Capabilities

The Lumify Ultrasound System is intended for abdominal (including gallbladder and lung), cardiac, carotid, general imaging, musculoskeletal, neonatal and adult cephalic, OB/GYN, small parts (small organ), superficial, urology, and vascular applications. It can be used for 2D and M-Mode, Color, and combined 2D and Color imaging. The system provides 2D distance and ellipse area measurement tools. Measurements can be performed while using 2D and M-Mode.

NOTE
Voice-to-text capability depends upon your device’s support for the feature and on your wireless or cellular connection.

Measurements

The system provides tools for measuring distance and for measuring the area and circumference of an ellipse.
After you perform measurements, you can save the measurements by acquiring an image that contains the measurements. The system displays a maximum of four distance measurements or one ellipse measurement at a time.

Transducer Types

Available transducer types are curved array, linear array, and sector array transducers. For a list of supported presets for specific transducers see, “Presets and Transducers” on page 140.

Indications for Use and Supporting Transducers

- **WARNING**
 - The device is not intended for ophthalmic use or any application that causes the acoustic beam to pass through the eye.

- **WARNING**
 - Do not charge your device while scanning a patient.

- **CAUTION**
 - United States federal law restricts this device to sale by or on the order of a physician.

Ultrasound exams should be performed only for medical purposes with a prescription from a licensed physician.

Lumify is a transportable ultrasound system intended for use in environments where healthcare is provided by healthcare professionals.
Use only transducers that are approved by Philips for use with your Philips ultrasound system.

The following are the indications for use for this system and the transducers supporting each indication.

System Indications for Use and Supporting Transducers

<table>
<thead>
<tr>
<th>Indication for Use</th>
<th>Supporting Transducers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal</td>
<td>C5-2, L12-4, S4-1</td>
</tr>
<tr>
<td>Cardiac Adult</td>
<td>S4-1</td>
</tr>
<tr>
<td>Cardiac Pediatric</td>
<td>S4-1</td>
</tr>
<tr>
<td>Carotid</td>
<td>L12-4</td>
</tr>
<tr>
<td>Cephalic (Adult)</td>
<td>S4-1</td>
</tr>
<tr>
<td>Cephalic (Neonatal)</td>
<td>S4-1</td>
</tr>
<tr>
<td>Fetal Echo</td>
<td>C5-2</td>
</tr>
<tr>
<td>Fetal/Obstetric</td>
<td>C5-2, S4-1</td>
</tr>
<tr>
<td>Gynecology</td>
<td>C5-2, S4-1</td>
</tr>
<tr>
<td>Musculoskeletal (Conventional)</td>
<td>L12-4</td>
</tr>
<tr>
<td>Musculoskeletal (Superficial)</td>
<td>L12-4</td>
</tr>
<tr>
<td>Pediatric</td>
<td>C5-2, L12-4, S4-1</td>
</tr>
<tr>
<td>Peripheral Vessel</td>
<td>L12-4</td>
</tr>
<tr>
<td>Small Organ</td>
<td>L12-4</td>
</tr>
<tr>
<td>Urology</td>
<td>C5-2</td>
</tr>
</tbody>
</table>

Contraindications

None known.
Patient Data Protection

The Lumify app does not encrypt patient data. It is your responsibility to configure your device to meet your local security policies and regulatory requirements. Consult your healthcare-IT security department to ensure that your device is configured in accordance with your specific requirements for information security.

Philips recommends that you protect patient data by encrypting your device and setting a password or passcode as a screen lock for your device, in accordance with your institution's security policies and requirements. For instructions, see the documentation that accompanies your device.

When you are finished using the system, you can briefly press the On/Off control on the device to lock the screen and prevent unauthorized access to patient data, or you can simply shut down the system, which logs you off automatically. For more information about patient data protection, see Shared Roles for System and Data Security on your User Information CD or in the Support section of the Lumify website:

www.philips.com/lumify

The Lumify Ultrasound System is not intended for long-term storage of patient data. Export exams frequently and delete them after they are exported. You can hide patient data on exported images and loops (see “Exporting Exams” on page 132 and “Showing or Hiding Patient Data on Exported Images and Loops” on page 133). You can also delete all patient data from the Lumify system (see “Deleting Patient Data and Lumify Settings” on page 93).

Wireless Networking

For information about configuring your device for wireless or cellular networking, see the documentation that accompanies your device. For information about adding and configuring connectivity profiles, see “Connectivity Profiles” on page 93.

It is your responsibility to configure the wireless network security mechanisms that are compatible with your network. Consult your healthcare IT security department to ensure that your device is configured in accordance with your specific requirements for information security.
System Components

The system consists of the following:

NOTE

Transducer subscription plans are available only to customers located in the USA.

- The Philips Lumify app, available for download from the Google Play Store
- One or more Philips Lumify transducers
 For subscription and purchasing options, visit the Lumify website: www.philips.com/lumify, or contact your local Philips representative.
- A compatible Android device (for a list of compatible devices, visit the Lumify website: www.philips.com/Lumify-Compatible-Devices)
- A carrying bag
- User information (see “User Information Components” on page 15)
Data Storage

You can export exams and images from the Lumify ultrasound system to a DICOM PACS, to a network share, or to a local directory. You can also send images by e-mail. For more information, see “Exporting Exams” on page 132 and “Exporting Images and Loops” on page 129.

System Settings

To configure the settings for your system, touch ☰, and then touch Settings ☰.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account and Login</td>
<td>Allows you to set up automatic login to Reacts and to clear your Reacts credentials from your device.</td>
</tr>
<tr>
<td>Audit Logs</td>
<td>Allows you to view audit logs, which contain actions such as exam start, exam end, and exam export or e-mail. For more information, see “Viewing Audit Logs” on page 152.</td>
</tr>
<tr>
<td>Barcode Scanner</td>
<td>Allows you to add and rearrange barcode formats.</td>
</tr>
<tr>
<td>Call Settings</td>
<td>Allows you to set your device's audio preference and to specify whether to share your device's imaging stream with the collaborator upon starting a Reacts session.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Camera</td>
<td>Allows you to specify whether to share your device’s video stream with the collaborator upon starting a Reacts session, and to set the default device camera for Reacts sessions.</td>
</tr>
<tr>
<td>Cardiac Image Orientation</td>
<td>Allows you to reverse the left/right orientation of the image in the Cardiac preset.</td>
</tr>
<tr>
<td>Control Orientation</td>
<td>Allows you to set the position of the imaging controls when your device is in landscape orientation.</td>
</tr>
<tr>
<td>Customer Information</td>
<td>Allows you to edit or delete the contact information provided in the Contact Preferences form during registration of the connected transducer (see “Registration and Entitlement” on page 81).</td>
</tr>
<tr>
<td>Loop Duration</td>
<td>A slider that you drag to set the duration of acquired loops. For more information about acquiring loops, see “Acquiring Loops” on page 120.</td>
</tr>
<tr>
<td>Patient Database</td>
<td>Allows you to repair or reset the patient database. Repair Database removes corruption from the database. Reset Database deletes all patient data. For more information, see “Deleting Patient Data and Lumify Settings” on page 93.</td>
</tr>
<tr>
<td>Power Control</td>
<td>Displays a control that you can use to adjust the output power.</td>
</tr>
<tr>
<td>Power Saving</td>
<td>Allows you to specify that the system reduce the frame rate while you are in the imaging display but not actively scanning a patient. Reducing the frame rate saves power and extends battery life.</td>
</tr>
<tr>
<td>Registered Transducers</td>
<td>A list of the transducers registered with Lumify.</td>
</tr>
<tr>
<td>System Logs</td>
<td>Allows you to send logs to Philips in case of a system problem. For more information, see “Sending System Logs” on page 151.</td>
</tr>
<tr>
<td>Thermal Index Display</td>
<td>Allows you to select the thermal index that you want to display.</td>
</tr>
<tr>
<td>Transducer Tests</td>
<td>Allows you to run a series of tests to diagnose image quality issues, transducer recognition issues, or specific transducer error messages. For more information, see “Testing Transducers” on page 147.</td>
</tr>
<tr>
<td>WiFi Settings</td>
<td>Allows you to configure your device’s wireless or cellular network settings.</td>
</tr>
</tbody>
</table>
System Information

System information is available in the About dialog box (touch , and then touch About).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents and Support</td>
<td>Provides access to legal documents, privacy information, the Lumify website, the User Manual, and open-source software licenses.</td>
</tr>
<tr>
<td>EU164</td>
<td>Allows Philips to identify and match your device with system logs, if you require assistance.</td>
</tr>
<tr>
<td>Software Version</td>
<td>Provides the Lumify app version.</td>
</tr>
<tr>
<td>Tablet Identifier</td>
<td>Allows Philips to identify and match your device with system logs, if you require assistance.</td>
</tr>
<tr>
<td>Transducer Serial Number</td>
<td>Provides the connected transducer's serial number. The system automatically records the transducer serial number when you connect and register the transducer with the system.</td>
</tr>
</tbody>
</table>
4 Using the System

The topics that follow will help you understand and use the features of the system.

Downloading and Installing the Lumify App

The Lumify app is available from the Google Play Store. The Google Play Store is a digital media store, operated by Google, from which you can download apps for the Android operating system. Before you install the Lumify app, make sure that your device meets or exceeds the minimum specifications (see “Device Requirements” on page 71) and visit the Lumify website for a list of compatible devices:

www.philips.com/Lumify-Compatible-Devices

1. On your Lumify-compatible Android device, open the Google Play Store:
 https://play.google.com
2. Search for Lumify. If you cannot find Lumify, your device may not meet the minimum specifications. For more information, visit the Lumify website for a list of compatible devices:
 www.philips.com/Lumify-Compatible-Devices
3. Follow the displayed instructions to download and install the Lumify app.

Registration and Entitlement

Before you can use the Lumify app, you must register one or more transducers. The Lumify app prompts you to connect your transducer and, if you purchased the transducer outright, provide your contact information.
If you subscribe to a transducer, at least once a month, with the Lumify app open, make sure that your device is connected to a wireless or cellular network. Your system automatically reregisters all previously registered transducers. If you receive notification that the transducer's registration has expired, connect your device to a wireless or cellular network and reconnect the transducer.

If you purchased the transducer outright, then you must register your transducer and provide your most up-to-date contact information the first time you install your Lumify software and initialize the transducer. Philips uses the contact information you provide to communicate important product information and updates to you. Unlike subscribed transducers, the system does not automatically reregister purchased transducers once a month.

NOTE

If you upgrade the Lumify app, upgrade the Android operating system, or you purchased the transducer outright and have connected it into a new device, the system prompts you to reregister the next time you connect a transducer.

NOTE

Lumify preserves user settings when the Lumify app or the Android operating system is updated.

Registering Your Transducers

1. Make sure that your device is connected to a wireless or cellular network.
2. Start the Lumify app.
3. Carefully read the **Terms and Conditions**, and then touch **I Agree**.
4. Touch **Register**.
5. Connect your Philips transducer to your device. The first time you connect the transducer to your device, the device prompts you to **Open Lumify When This USB Device is Connected**. Select **Use By Default For This USB Device**, and then touch **OK**. The Lumify app performs a system check and registers your transducer.

6. If you are subscribing to the transducer, on the **Registration Complete** display, touch **Accept**.

7. If you purchased the transducer outright, touch **Continue** and, on the **Contact Preferences** form, do the following:
 a. Type your information for **First Name**, **Last Name**, **Institution**, **Country**, and **Email Address**.
 b. If preferred, select **Keep Me Informed of News, Products, and Promotions from Philips**.
 c. If preferred, deselect **Remember This Contact Information When Registering Lumify on Other Mobile Devices**.
 d. Touch **Submit Info**.
 e. On the **Registration Complete** display, touch **Accept**.

8. To redeem or share your Reacts access codes, if available, touch **Redeem or Share Codes**, and then see “**Redeeming or Sharing Your Reacts Access Codes**” on page 101.

If registration fails, see “**Troubleshooting**” on page 152, or visit the Lumify website for FAQs and troubleshooting tips:

www.philips.com/lumify

Giving Lumify Access to Shared Device Storage

Lumify uses shared device storage for the patient database and to access your device’s camera for barcode scanning.

Some versions of the Android operating system require that you specify that an app is allowed access to shared device storage. If your device prompts you to allow Lumify to access photos, media, or files on your device, touch **Allow**. If you touch **Deny**, you cannot use Lumify until you give access to shared device storage in the Android **App Permissions** settings.
Updating the Lumify App

You can configure your device to update apps individually or allow them to be updated automatically.

If your Lumify-compatible device is configured to automatically update apps, the Lumify app updates automatically when an update is available, unless the update includes a permissions change. In that case, you are prompted to update the Lumify app.

If your device is configured to update apps individually, you can obtain the latest Lumify update from the Google Play Store. For more information, search for "update apps" in Google Play Help.

Viewing the App Walkthrough

The first time you start the Lumify app, it displays a walkthrough tutorial to familiarize you with the features of the system.

At the end of the walkthrough, do one of the following:

- To begin an exam, touch Start Scanning.
- To view the Reacts walkthrough, touch Learn More.

You can view the app walkthrough at any time.

Touch and then touch Walkthrough.

Canceling Your Subscription

Transducer subscription plans are available only to customers in the United States. To cancel your subscription, contact your local Philips representative.
Turning the System On and Off

WARNING
Failing to end the current exam before starting a new exam can result in data being acquired and stored under the wrong patient name. If you close the Lumify app without ending the exam, the system pauses the exam.

NOTE
If battery power is unavailable, or if the battery charge level is critically low, disconnect the transducer and charge your device.

NOTE
Philips recommends that your device be fully charged before you start imaging. To avoid unexpected battery discharging, charge your device at regular intervals, or when the device displays the low-battery warning.

- Before you turn on your device, disconnect the transducer and all peripheral devices.
- Before you turn off your device, end the current exam.
- For instructions on turning the system on or off, see the documentation that accompanies your device.
Setting the System Time and Date

The Lumify app uses your device's clock and calendar function to display the time and date on the imaging display, and to provide a time stamp on patient exams and acquired images. If you change the time or date on your device, the Lumify app prompts you to restart.

For instructions on changing the time and date, see the documentation that accompanies your device.

Setting the Thermal Index Display

You can set which of the thermal indices to display depending on the type of tissue you are imaging.

1. Touch 📈, and then touch Settings ⚙.
2. In Thermal Index Display, select the thermal index you want.

Imaging Display

The imaging display contains an ultrasound image, exam and image information, indicators, and system controls.

The exam information includes the patient data, the current time and date, and the MI and TI values. The system does not display patient data until you start an exam.

Image information is displayed next to the image. This includes the transducer and selected preset. The controls area contains depth, gain, freeze, mode, and power controls. The location of the controls area changes depending on the orientation of your device.
Imaging Display (Landscape Orientation)

A Controls area
B Image area
C Patient information
1 Scan plane orientation marker
2 MI and TI values
3 Focal indicator
4 Page indicator: Touch the indicator to go to the next page of controls, or swipe to move between pages.
5 Image information
6 Review and settings menu
<table>
<thead>
<tr>
<th></th>
<th>Centerline control</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Full-screen view control</td>
</tr>
</tbody>
</table>

In portrait orientation, the location of the controls area changes.

Imaging Display (Portrait Orientation)
Quick Exams

In an emergency, you can start an exam without entering patient data. This is called a quick exam. During a quick exam, the system provides a medical record number (MRN) and the words Quick ID appear as the patient’s last name.

You can edit patient data until you end the exam.

Starting Quick Exams

CAUTION

You cannot edit patient information after you end the exam. After you end the exam, you can only view patient information. You cannot edit data for previous exams.
1. On the **Scan/Create Patient** display, touch an exam preset or drag the selector on the preset selector wheel to the exam preset you want.

![Drag the Wheel Selector to Select a Preset](image)

2. Touch **Scan**. You can now begin imaging if you do not want to add any patient information.

3. To add patient information:
 a. On the imaging display, touch **Quick ID**.
 b. On the **Patient Info** display, type the patient information, query a Modality Worklist (MWL), or scan a barcode. For more information, see “Starting New Exams” on page 111.
 c. Touch **Save and Return**.
 d. Resume imaging.
Using Your Device's Camera as a Barcode Scanner

You can use your device's camera to scan barcodes and populate patient information fields. You can save multiple barcode formats. See “Saving Barcode Formats” on page 92.

The first time you scan a barcode format, you must map the format to at least one patient information field. Lumify remembers this information for subsequent barcode scans of the same format.

The barcode you scan must meet the following conditions or Lumify will return an error:

- There is a delimiter between strings.
- The values must be unique.
- The delimiter is a non-alphanumeric, single character.

If you receive an error message, create a sample barcode where each field is a unique value and follow the steps in the following procedure to scan and map the format.

You can scan in either portrait or landscape orientation.

1. On the Patient Info display, touch Scan Barcode.
2. If prompted, touch Allow to allow Lumify to use your device's camera.
3. Use the viewfinder to place the horizontal red line across the barcode. Make sure that the entire barcode is included in the viewfinder, perpendicular to the red line. If sound is enabled on your device, it beeps when Lumify scans the code.
4. If this is the first time you have scanned this barcode format, do the following:
 a. Type a name to describe the barcode configuration and touch Continue. Lumify displays the patient information fields from the barcode.
 b. In Barcode Configuration, drag the barcode text to the corresponding patient data entry field (to adjust your selection, drag and). Alternatively, type the patient information fields exactly as they appear in the displayed barcode result. Each field's value must be unique (for example, you cannot enter the same value for the Last Name and the First Name).
5. Touch Save.
Saving Barcode Formats

You can save multiple barcode formats. When Lumify scans a barcode, it searches the formats for the best match.

1. Do either of the following:
 - In the barcode viewfinder, touch.
 - Touch, touch Settings, and then touch Barcode Settings.

2. In Barcode Settings, do any of the following:
 - To add a new barcode format, touch Add New and scan a barcode. Type a name for the barcode and touch Continue.

 Lumify displays the patient information fields from the barcode result. In Barcode Configuration, drag the barcode text to the corresponding patient data entry field (to adjust your selection, drag and). Alternatively, type the patient information fields exactly as they appear in the displayed barcode result. Each field's value must be unique (for example, you cannot enter the same value for the Last Name and the First Name) and you must complete at least one field. Touch Save and Return.
 - To rearrange barcode formats, drag the entries.
 - To remove a barcode format, touch.

Supported Barcode Formats

Lumify supports the following barcode formats:

<table>
<thead>
<tr>
<th>Format</th>
<th>Symbologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D Product Barcodes</td>
<td>UPC-A, UPC-E, EAN-8, EAN-13</td>
</tr>
<tr>
<td>1D Industrial Barcodes</td>
<td>Code 39, Code 93, Code 128, Codabar, ITF-14, RSS-14, RSS-Expanded</td>
</tr>
<tr>
<td>Matrix (2D) Barcodes</td>
<td>QR Code, Data Matrix, Aztec, PDF 417</td>
</tr>
</tbody>
</table>
Connecting Transducers

Plug the transducer into the USB port on the device. When initialization is complete, the name of the transducer appears on the imaging display.

When you first connect a transducer, the Android operating system prompts you to select whether the Lumify app should open when the transducer (USB device) is connected. If you select **Use By Default For This USB Device** and touch **OK**, the Lumify app opens whenever the transducer is connected, regardless of which app is currently open on the device.

Deleting Patient Data and Lumify Settings

You can delete all patient data and Lumify settings from the system, including data from the current exam.

To delete patient data from exported images and loops, see “Showing or Hiding Patient Data on Exported Images and Loops” on page 133.

Do one of the following:

- To delete only patient data, touch ✄️, and then touch **Settings**. Touch **Reset Database**. Touch **Yes** to confirm.

- To delete patient data and all Lumify settings, including registration information, DICOM logs, and audit logs, in the Android operating system, go to **Settings**. Touch **Apps**, touch **Lumify**, and then touch **Clear Data**.

Connectivity Profiles

Connectivity profiles let you define a set of storage destinations, export strategies, exam settings, and connection settings. You can create and configure multiple connectivity profiles and quickly switch among them. You must end the exam before you can switch connectivity profiles.
Adding a Connectivity Profile

NOTE
Ports less than or equal to 1024 cannot be used for inbound connections on Android devices.

1. Touch 📱, and then touch **Connectivity Profiles** 📱.
2. Touch **Add New Profile**.
3. In the **Add New Profile** dialog box, type a name for the new connectivity profile, and then touch **Continue**.
4. Under **Profile Management**, to apply the connectivity profile, select **Set [connectivity profile] As The Current Profile**. A ✅ indicates that the connectivity profile is applied. The active connectivity profile is indicated under **Connectivity Profile** in the review and settings menu.
5. Under **Servers & Roles**, do any of the following:
 - Select a primary storage destination. To add a new export destination, touch **Manage Options** and touch **Add New** (see “Configuring Export Destinations” on page 134).
 - Select a DICOM storage commitment server (available if a DICOM storage destination is the profile's primary storage destination). To add a new storage commitment server, select **Manage Options** and touch **Add New** (see “Export Destination Settings” on page 135).
 - Select a Modality Worklist (MWL) server. To add a new MWL server, select + **Add New** and touch **Add New** (see “Adding a Modality Worklist Server” on page 96).
 - Select a Modality Performed Procedure Step (MPPS) server. To add a new MPPS server, select **Add New**, and then, in the **Setup MPPS Servers** dialog box, touch **Add New** (see “Export Destination Settings” on page 135).
Connectivity Profiles

7. Under **Exam Settings**, you can do the following:
 - To specify when exams automatically end, select a time from the **Automatically End Exams Older Than** menu.
 - If your primary storage destination is a DICOM destination, you can set the system to automatically delete exams after all of the images are committed to the storage destination.

8. Under **Inbound Connection Settings**, you can do the following:
 - To scan for a specific inbound port, touch the **Listen For Inbound Connections On Port** field, type a valid port higher than 1024, and then touch **Save**.
 - View the interface and IP address of your device's current inbound connections.

9. Touch **Save**.

Editing Connectivity Profiles

1. Touch ☐, and then touch **Connectivity Profiles** ☐.
2. At the top of the display, touch the profile name to open it.
3. Make the profile changes you want.
4. Do one of the following:
 - To save the changes to the profile, touch **Save**.
 - To clear the changes to the profile, touch **Discard**.

Switching Connectivity Profiles

1. Touch ☐, and then touch **Connectivity Profiles** ☐.
2. At the top of the display, touch the profile name to open it.
3. Under **Profile Management**, to apply the connectivity profile, select **Set [connectivity profile] As The Current Profile**. A ![checkmark] indicates that the connectivity profile is applied. The active connectivity profile is indicated under **Connectivity Profile** in the review and settings menu.

4. Touch **Save**.

Modality Worklist

You can load patient data and select a scheduled procedure from a DICOM Modality Worklist (MWL) server instead of entering the patient data manually.

Before you can use the modality worklist feature, you must add a DICOM MWL server.

Adding a Modality Worklist Server

You can add a new Modality Worklist (MWL) server from **Connectivity Profiles** in the review and settings menu. For information on **Connectivity Profiles**, see “Connectivity Profiles” on page 93.

1. Touch ![Modality Worklist], and then touch **Connectivity Profiles**.
2. With your preferred connectivity profile active, select **Add New** from the **Select a MWL Server for this Profile** menu.
3. On the **Setup Worklists** form, type or select values from the menus for the following:
 - **Server Nickname**
 - **Lumify AE Title**: The AE title for your device
 - **Remote AE Title**: The AE title for the MWL server
 - **Hostname or IP**: Use a DNS or a static IP address
 - **Port**: The port number for the MWL server
4. Select **Query Options**.
5. To specify advanced connection settings, select Show Advanced Options:
 - **DNS Suffix**: The DNS name without the hostname
 - **Read Timeout (Sec)**: The network reply timeout
 - **Connection Timeout (Sec)**: The DICOM ARTIM timeout
 - **Max Packet Size (Bytes)**: The maximum size of a packet sent to the DICOM server.
6. To test the connection to the server, touch **Test**.
7. Touch **Save**.

Modifying or Deleting a Modality Worklist Server

You can modify or delete a Modality Worklist (MWL) server from Connectivity Profiles in the review and settings menu

For information on Connectivity Profiles, see “Connectivity Profiles” on page 93.

On the **Setup Worklists** form, type or select values from the menus for the following:
 - To modify the MWL server, type settings or select options, and then touch **Save**.
 - To delete the MWL server, touch \.
5 Using Reacts

Lumify Integrated Tele-Ultrasound Powered by Reacts Collaborative Platform (Lumify with Reacts) is available as a subscription-based option.

React is interactive audio-video software developed, marketed, and sold by Innovative Imaging Technologies, Inc. (IIT). The Reacts software is integrated into the Lumify app, providing live ultrasound collaboration.

With your device connected to the Internet, you can use Reacts to share your live Lumify ultrasound image with a remote Reacts user for training or collaboration. During the Reacts session, you can communicate with the remote Reacts user in a video chat.

When you share the Lumify ultrasound image with the remote Reacts user, the remote user is restricted to viewing only your camera’s live feed and, in some instances, only the live ultrasound image. The remote Reacts user cannot see patient data or previously completed exams.

The Reacts instructions in this User Manual are intended for the Lumify with Reacts user. For instructions on using Reacts outside the Lumify app, IIT Reacts provides online training and tutorials at this website:

https://reacts.zendesk.com/hc

Before you can use Lumify with Reacts for the first time, you must be connected to the Internet and do the following:

1. Redeem or share your Reacts access codes (see “Redeeming or Sharing Your Reacts Access Codes” on page 101) to activate your free Reacts licenses.

2. Create a Reacts account (see “Creating a Reacts Account” on page 102). If you already have a Reacts account, you can use your Reacts credentials to log in to Reacts (see “Logging In and Out of Reacts” on page 103).

3. Add Reacts contacts (see “Adding, Removing, and Searching Reacts Contacts” on page 104).
NOTE
Remote Reacts users cannot modify or control the Lumify app.

NOTE
If you want to use Reacts on a workstation, see https://www.iitreacts.com for information about setting up a subscription and system requirements.

Viewing the Reacts Walkthrough

The first time you start the Lumify app, it displays the app walkthrough tutorial to familiarize you with the features of the system.

After you log in to the Lumify app, you can view the Reacts walkthrough by doing any of the following:

- After the Lumify app walkthrough ends, touch Learn More.
- After you have logged into Reacts, touch , and then touch Walkthrough.

Reacts Access Codes

With each Lumify transducer, Philips provides two access codes that, when redeemed or shared, provide free access to the Standard Plan of Reacts with the following terms and conditions, starting from the time that you register your transducer:

- If you subscribe to the transducer, you can redeem or share your Reacts access codes at any time throughout your subscription; they do not expire. As long as your transducer subscription is active, each access code provides access to the Standard Plan of Reacts, which automatically renews every 12 months.
• If you purchase a transducer, upon registering of your transducer, you have 12 months to redeem or share your Reacts access codes before they expire. Each access code provides access to the Standard Plan of Reacts for a 6-month trial period. After the trial period, contact IIT Reacts to select a Reacts plan.

If you select **Remember Me** when you log in to Reacts, Lumify preserves redeemed Reacts access codes with other Lumify user settings during Lumify app upgrades or Android operating system upgrades.

If you prefer, you can redeem or share your access codes through the IIT Reacts website: https://reacts.com/philips/redeem

Redeeming or Sharing Your Reacts Access Codes

After you have registered your transducer (see “Registering Your Transducers” on page 82), touch 📋, touch **Launch Reacts** 📌, and then do any of the following from the Reacts login menu:

• To redeem or share your Reacts access codes, touch **Redeem or Share Codes** and do either of the following:
 – To redeem your Reacts access code, touch **Redeem**, type your Reacts login credentials, and then touch **Okay**.
 – To share your Reacts access code, touch **Share**, type the sender and recipient names and e-mail addresses, and then touch **Share**.

• For information about Reacts, touch **What is Reacts**.

• If you do not want the Reacts access code menu to appear the next time you register a transducer, select **Don’t Ask Me Again**.

• To begin using the system and postpone redeeming or sharing your Reacts access code, touch **Skip**. For instructions on viewing your Reacts access codes, see “Viewing Your Reacts Access Codes” on page 102.

• To return to the Lumify app, touch ⬅️
Viewing Your Reacts Access Codes

You can view any available Reacts access codes for the current connected transducer.

- Touch \[\text{Launch Reacts}\]. The number of available access codes appear in green beside **Launch Reacts**.

- Touch \[\text{Launch Reacts}\] and then touch **Launch Reacts**. The available access codes and, if subscribed to the transducer, their expiration dates appear under **Sign In**.

For instructions on redeeming or sharing your Reacts access codes, see “**Redeeming or Sharing Your Reacts Access Codes**” on page 101.

Creating a Reacts Account

Account management, including license redemption, account creation, activation, and deletion, is a collaborative effort among IIT Reacts, Philips, and the users of the Lumify app. In addition to the Reacts contacts within the Lumify app, IIT Reacts provides an Account Management Portal that allows you to manage user accounts and the list of approved contacts. For more information, see “**Adding, Removing, and Searching Reacts Contacts**” on page 104.

Before you can use Reacts on your device, your device must be connected to the Internet, and you must create a Reacts account.

To set up a Reacts account on a PC workstation, iOS device, or web browser, see the Reacts website:

https://reacts.com/lumify

1. To create a Reacts account within the Lumify app, do the following:
 a. Touch \[\text{Launch Reacts}\] and then touch **Launch Reacts**.
 b. Touch **Create An Account**, and type your name and e-mail address.
 c. Create a password. (The password must be a minimum of eight characters and include one uppercase letter, one lowercase letter, and one number.)
 d. Touch **Create Account**. A verification e-mail is sent to the address that you provided in step b.
Logging In and Out of Reacts

NOTE
If Automatically Log In To Reacts is enabled and you log out of Reacts, Automatically Log In To Reacts becomes disabled.

1. To log into Reacts, do the following:
 a. Touch 🗃, and then touch Launch Reacts 🖉.
 b. If you want to redeem or share Reacts access codes, touch Redeem or Share Codes (see “Redeeming or Sharing Your Reacts Access Codes” on page 101).
 c. Type the e-mail and password associated with your Reacts account.
 d. If you want Reacts to remember your login information and automatically log in next time, select Remember Me and Automatically Log In To Reacts.
 e. Touch Log In.

2. To log out of Reacts, touch 🗃, and then touch Log Out 🗝.
Managing Reacts Contacts

Your Reacts contacts sync with your Reacts license, so if you have Reacts installed on multiple Lumify devices, you can manage your Reacts contacts anywhere, using your same Reacts login credentials. For more information, see the IIT Reacts website.

Adding, Removing, and Searching Reacts Contacts

1. Touch ☰, touch Launch Reacts 📲, and then touch Contacts 📞.
2. In the Reacts Contacts list, do any of the following:
 - To add a contact, do any of the following:
 - If the contact does not have a Reacts account, touch 📞, and then touch Contacts 📞, in the Invite New User To Reacts dialog box, type the contact's e-mail address associated with their Reacts account and touch Send. A request to join Reacts is sent to the e-mail provided.
 - If the contact has a Reacts account, touch 📞, type the name of the contact you want to add in the Search field, and then touch the name you want from the search results that appear as you type. The contact appears in the Reacts Contacts list with Pending 🎯 status. For information on contact status, see “Reacts Contact Status” on page 104.
 - To remove a contact, touch and hold the contact that you want to remove, and then touch Yes.
 - To search for a contact in your list, touch 🔍, and type a name or e-mail address. Search results appear as you type.

Reacts Contact Status

The Reacts Contacts list includes a status description and indicator next to the contact's name.
Reacts Status Icons

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online</td>
<td>The contact is available, and you can start a Reacts session with them.</td>
</tr>
<tr>
<td>Offline</td>
<td>The contact is unavailable for a Reacts session.</td>
</tr>
<tr>
<td>Busy</td>
<td>The contact is actively in a Reacts session, and is unavailable for a Reacts session with you.</td>
</tr>
<tr>
<td>Pending</td>
<td>The contact has not accepted your contact request and is unavailable for a Reacts session.</td>
</tr>
</tbody>
</table>

Responding to Reacts Contact Requests

The requests of other Reacts users to add you to their contacts list appear in your Reacts Contacts list. To respond, touch Accept or Decline.

If you touch Accept, the contact is added to your Reacts Contacts list, and you are added to theirs.

Starting a Reacts Session

1. Log in to Reacts (see “Logging In and Out of Reacts” on page 103).
2. Touch ☐️, and touch Contacts 📇.
3. Touch ☉️ beside the active contact that you want to call. When the contact answers your call, the Reacts session is active.
4. If you want to end the call before the contact answers, touch Cancel ✗.
Ending a Reacts Session

NOTE

Some controls are unavailable in full-screen view. To exit full-screen viewing, touch ✔️ in the lower right corner of the display.

To end a Reacts session, touch ✈️.

Using the Reacts Pointer

During a Reacts session, you can use the pointer to call attention to an area on the image.

NOTE

During a Reacts session between two Lumify devices, the pointer tool is unavailable.

1. To add a pointer, touch the streamed image, and then touch Add a Pointer.
2. Drag the pointer to the preferred location on the streamed image.
3. To remove the pointer, touch the streamed image, and then touch Remove Pointer.

Reacts Session Views

A Reacts session can include the following views, which you can rearrange or hide:

* Your device’s camera view
• The remote Reacts user’s live video feed
• Lumify live ultrasound imaging

Rearranging Reacts Session Views

During a Reacts session, you can rearrange the views into three areas on the display: the main center view and smaller secondary views.

To move a session view, drag the view to the preferred area. The view previously in that area moves clockwise into the next position.

Showing and Hiding the Reacts Secondary Session Views

NOTE

Some controls are unavailable in full-screen view. To exit full-screen viewing, touch in the lower right corner of the display.

• To hide the secondary views, in portrait orientation, touch . In landscape orientation, touch .
• To show the secondary views, in portrait orientation, touch . In landscape orientation, touch .
Mutating the Microphone During a Reacts Session

NOTE

Some controls are unavailable in full-screen view. To exit full-screen viewing, touch ✗ in the lower right corner of the display.

- To turn off your device's microphone and mute the session, touch 🎤.
- To restore your device's microphone and unmute the session, touch 🎤.

Sharing Your Device's Camera

WARNING

Media viewed remotely through Reacts streaming are intended only for reference and must not be used for diagnostic purposes.

- To share your device's camera with a remote Reacts user, touch the streamed image, and then touch Share Camera 📡.
- To stop sharing your device's camera, touch the streamed image, and then touch Stop Camera Sharing 📡.
NOTE
During a Reacts session between two Lumify devices, sharing your device's camera and simultaneously sharing your Lumify ultrasound image is unavailable.

NOTE
If a poor-connection message appears at the bottom of the imaging display, touch Stop Camera Sharing to improve session quality and responsiveness.

Sharing Your Lumify Ultrasound Image

WARNING
Media viewed remotely through Reacts streaming are intended only for reference and must not be used for diagnostic purposes.

• To share your Lumify ultrasound image with a Reacts remote user, touch the ultrasound image, and then touch Share Ultrasound. The sharing status appears on the upper left corner of the imaging display.
• To stop sharing your Lumify ultrasound image, touch the ultrasound image, and then touch Stop Ultrasound Share.

NOTE
During a Reacts session between two Lumify devices, sharing your device's camera and simultaneously sharing your Lumify ultrasound image is unavailable.
NOTE
If a poor-connection message appears at the bottom of the imaging display, touch **Stop Camera Sharing** to improve session quality and responsiveness.

NOTE
If the remote Reacts user requests to record the remotely streamed images, you must accept the request to enable recording.
6 Performing an Exam

This section guides you through procedures commonly used in performing patient exams with the system. These procedures include entering patient data, acquiring and reviewing images, and making measurements and calculations.

Have a backup system present during critical exams to ensure completion of the exam in the event that the primary system fails.

WARNING

You are responsible for configuring your device in accordance with your institution’s security policies. Notifications and alerts from third-party applications may interfere with an exam.

Starting New Exams

1. On the **Scan/Create Patient** display, touch an exam preset or drag the selector on the preset selector wheel to the exam preset you want.
2. Do one of the following:
 - To create a temporary Quick ID and start scanning immediately, touch **Scan**. The imaging display appears, and you can begin scanning. For more information, see “Starting Quick Exams” on page 89.
 - To manually enter patient information before you begin scanning, touch **Create Patient**. To show additional **Patient Info** fields, select **Show Detailed Form**. To begin scanning, touch **Start Exam**.

NOTE

The last name is required. If you do not enter a medical record number (MRN), the system creates an MRN for the exam. If the system finds a matching MRN in the patient database, the system completes the remaining **Patient Info** fields.
3. To search a Modality Worklist for a specific exam, touch **Create Patient**, and then touch **Query MWL** (see “Searching in the Worklist” on page 113).

4. To enter data into the system by scanning a patient's barcode, touch **Create Patient**, and then touch **Scan Barcode** (see “Using Your Device's Camera as a Barcode Scanner” on page 91).

Searching in the Worklist

You can search for a specific exam from a Modality Worklist (MWL) by using **Query MWL** on the **Patient Info** form. Before you can search for an MWL exam, you must configure a connection to an MWL server (see “Adding a Modality Worklist Server” on page 96).

1. Touch **Query MWL** on the **Patient Info** form.
2. Select the MWL server you want to query.
3. In the **Enter Advanced Query Information** dialog box, do any of the following:
 - To search for a patient by **Patient Name**, **MRN**, **Accession #**, or **Requested Procedure ID**, type search criteria.
 - To search for all patients, leave all fields blank.
 - To insert a wildcard symbol (*) in the **Patient Name** or **MRN** field that allows the system to replace or represent one or more characters, touch **Insert Wildcard**. For example, type 45678 in the **MRN** field, and then touch **Insert Wildcard** to allow the system to return all MRNs that begin with 45678 (456781, 456782, 456783, and so on.)
4. Touch **Search**.
5. Do any of the following:
 - To see additional entries, swipe down.
 - To filter the **Query Results**, touch **Search All Fields** and type criteria. The system displays results that meet the criteria.
6. Select the patient from **Query Results**.
Changing Presets During Exams

You can change presets during an active exam.

1. Touch • .
2. Under Current Exam, touch a preset.

Editing Patient Data

CAUTION

You cannot edit patient information after you end the exam. After you end the exam, you can only view patient information. You cannot edit data for previous exams.

1. Touch • , and then touch Edit Patient Info.
2. Touch the field you want to edit and use the keyboard to replace, insert, or delete text. To show additional Patient Info fields, select Show Detailed Form.
3. Touch Save and Return.

Reviewing Saved Exams

You can review saved exams.

1. Touch • .
2. Touch Saved Exams .
3. Select an exam from the list. The exam opens in Review.
4. In the Review display, do any of the following:
Resuming a Paused Exam

If you leave an exam or close the system, you can return to the open exam within 24 hours by doing any of the following:

- Touch \(\text{Current Exam} \), and then touch \(\text{Current Exam} \).
- When \(\text{Scan/Create Patient} \) appears on the \(\text{Scan/Create Patient} \) display, swipe the screen from left to right.

Imaging Modes

CAUTION

Running multiple applications on your device while using the Lumify app increases your device's resource usage, causing decreased frame rate. To reduce device resource usage and increase frame rate, close all non-Lumify applications running on your device.
NOTE
When you adjust the depth to less than 3 cm while using the L12-4 transducer, the system zooms the image, and some portions of the image may not be visible. To view the entire image, pinch with your thumb and finger.

Available imaging modes are 2D, Color, and M-Mode.

2D Mode

2D mode is the most commonly used imaging mode. In 2D mode, the image is displayed in grayscale.

Using 2D Mode

1. Start an exam. The system enters 2D mode.
2. Optimize the image, using the controls in the controls area. If necessary, touch the page indicator (➡️ or ⬅️) or swipe to move between controls pages.

 • To control the image gain, adjust the Gain 🌟 dial.
 • To increase or decrease the distance from the face of the transducer to the deepest point in the displayed image, use the Depth 🔽 dial.
 • To increase or decrease the power output, use the Power ⚡ dial.
 • To view part of the image in more detail, spread your thumb and finger to zoom in on that area of the image. For more information, see “Zoom Magnification” on page 119.
 • To view the image in full-screen view, touch 🎧 in the lower right corner of the image. For more information, see “Full-Screen View” on page 119.
 • To display a centerline on the image, touch 🟧. For more information, see “Displaying a Centerline” on page 120.
Color Mode

In Color mode, a color box is overlaid on the 2D image; its size and position can be adjusted within the 2D image. The velocity and direction of flow in the color box are represented with different colors for direction and different shades for velocity. The colors being used appear in the color bar in the upper right corner of the imaging display.

Two color modes are available: **Fast Flow** (high color scale for arterial flow) and **Slow Flow** (low color scale for venous flow).

Using Color Mode

1. In 2D mode, optimize the image.

2. If necessary, touch the page indicator (or) or swipe to display **Fast Flow** or **Slow Flow**.

3. Touch **Fast Flow** or **Slow Flow**.

4. To position the color box on the anatomy of interest, drag the color box. (If you drag outside the color box, you pan the image.)

5. To change the size of the color box, pinch or spread inside the color box. (If you pinch or spread outside the color box, you zoom the image.)

6. To control the color gain, adjust the **Gain** dial.

7. To view the image in full-screen view, touch in the lower right corner of the image. For more information, see “Full-Screen View” on page 119.

8. To display a centerline on the image, touch . For more information, see “Displaying a Centerline” on page 120.

9. To exit Color imaging, touch **Fast Flow** or **Slow Flow**.
M-Mode

In M-mode, you can learn about the movement of an area of anatomy. In M-mode, the tissue interface position or depth is displayed along the vertical axis, and time is displayed along the horizontal axis. First, you position the M-line in the 2D image on the anatomy of interest. Then you can display information about movement along that line in an M-mode trace. Over time, the movement of the anatomy along the M-line, which is displayed on the 2D image, creates a scrolling display.

Using M-Mode

1. In 2D mode, optimize the image.

2. Touch MMode to display the M-line on the 2D image.

3. Drag the M-line to move it to the anatomy of interest.

4. Optimize the image using any of the following methods:

 - To control the image gain, adjust the Gain dial.
 - To increase or decrease the distance from the face of the transducer to the deepest point in the displayed image, use the Depth dial.
 - To increase or decrease the power output, use the Power dial.
 - To view part of the image in more detail, spread your thumb and finger to zoom in on that area of the image. For more information, see “Zoom Magnification” on page 119.
 - To view the image in full-screen view, touch in the lower right corner of the image. For more information, see “Full-Screen View” on page 119.
 - To display a centerline on the image, touch . For more information, see “Displaying a Centerline” on page 120.
5. To review the M-mode trace, touch \(\text{\\input{images/icbird}}\), and drag the loop time line to scroll forward or backward.

6. To exit M-mode, touch \text{MMode}.

Imaging Features

The system offers imaging features that provide improved imaging and greater flexibility when you are imaging a patient.

AutoSCAN

AutoSCAN automatically and continuously optimizes 2D image brightness at the default gain. AutoSCAN is always on.

Zoom Magnification

Using Zoom magnification, you can magnify a region of interest in an image for closer examination.

With your thumb and finger, spread to expand or pinch to reduce the specific area of the image. Touch the image and move your finger to pan or move the magnified image.

NOTE

If you spread or pinch inside a color box, you resize the color box instead of zooming.

Full-Screen View

You can specify that Lumify display live or frozen images in full-screen view, including in Review.
1. To view an image in full-screen view, touch \(\text{fullscreen}\) in the lower right corner of the image.

2. To restore normal viewing, touch \(\text{fullscreen}\).

Displaying a Centerline

You can display a centerline during live imaging (including when an image is frozen) to assist with needle guidance. The line is included in acquired images or loops.

To display the centerline, touch \(\text{centerline}\) on the lower left corner of the imaging display. To hide the centerline, touch \(\text{centerline}\) again.

Acquiring Images

You can acquire and save a still image from the current exam. The acquired image is saved in the patient exam, and a thumbnail of it is available in the Review display.

Touch Save Image \(\text{save image}\). The system beeps when the image acquisition is complete.

Acquiring Loops

You can acquire and save a loop from the current exam. The acquired loop is saved in the patient exam, and a thumbnail of it is available in the Review display. Loops in Review have the icon in the lower right corner of the thumbnail.

The system captures loops prospectively. You can specify the loop length duration in Settings. For more information, see “System Settings” on page 77.

To acquire a loop during live imaging, touch Save Loop \(\text{save loop}\). To stop acquisition, touch Save Loop \(\text{save loop}\).

The system beeps and a confirmation statement appears on the imaging display when the loop has been saved.
Annotation

The annotation feature is available in 2D and Color frozen mode.

Adding Labels

You can place text labels on an image to identify anatomical structures and locations.

1. Obtain the image you want to annotate and touch

2. If necessary, touch the page indicator (or) or swipe to display Annotate

3. Touch Annotate

4. Use the keyboard to type a label. Auto-words appear to the left and right of the letters you are typing. You can touch an auto-word to add it to your label.

5. Drag the label into position in the imaging area.

6. To edit a label, do the following:
 a. Touch the label. A line and the keyboard appear beneath it.
 b. Touch a starting point in the label and begin typing, or use the Backspace key to erase letters.
 c. Touch anywhere in the imaging area to exit annotation.

7. To delete a label, do either of the following:
 • Touch and hold the label. Touch Delete Annotation when it appears.
 • Touch the label and use your device's keyboard to delete the text.

Measurement and Analysis

The ultrasound system supports measurements. The measurement tools appear on the touch screen. Touching the tool label on the touch screen launches the tool.
Performing an Exam

Measurement and Analysis

122

Lumify Ultrasound System

The accuracy of the measurement depends, in part, on the ability of the operator.

Performing a 2D Distance Measurement

A 2D distance measurement uses two calipers to measure the length of a straight line between the two points. You can create a maximum of four distance measurements at a time. Each distance measurement uses a set of uniquely shaped calipers to help identify a measurement with their corresponding calipers.

While you are using the 2D distance measurement tool, double-tap to zoom the image. The system removes measurements from the image when it is unfrozen or when the exam ends. To retain the measurement on an image, acquire it (see “Acquiring Images” on page 120).

1. Obtain the 2D image you want to measure and touch .

2. Touch Measure .

3. Touch Distance from the menu. The word Distance and an initial value appear at the top of the image.

4. Touch the first caliper and drag to position it.

5. Touch the second caliper and drag to position it. The results update as the distance between the calipers changes.

NOTE

If you drag a measurement caliper out of the image area, the caliper may disappear. To restore the caliper position, touch Measure, touch Clear All, and then touch Measure and add the Ellipse or Distance measurement again.

6. To add additional distance measurements, repeat step 2 through step 5. A maximum of four distance measurements can be added to the image.
7. To save an image with the displayed measurements, touch **Save Image**.

8. To remove the measurements, touch **Clear All**.

Performing a 2D Ellipse Measurement

A 2D ellipse measurement uses an ellipse caliper to define the area and circumference of an ellipse.

While you are using the 2D ellipse measurement tool, double-tap to zoom the image. The system removes measurements from the image when it is unfrozen or when the exam ends. To retain the measurement on an image, acquire it (see “Acquiring Images” on page 120).

1. Obtain the 2D image you want to measure and touch **Measure**.

2. Touch **Measure**.

3. Touch **Ellipse** from the menu. The word **Area** and **Circumference** with their initial values appear at the top of the image.

4. Using the control points, drag the ellipse into position in the imaging area. The results update as you move the ellipse into position.

NOTE

If you drag a measurement caliper out of the image area, the caliper may disappear. To restore the caliper position, touch **Measure**, touch **Clear All**, and then touch **Measure** and add the **Ellipse** or **Distance** measurement again.

5. To save an image with the displayed measurements, touch **Save Image**.

6. To remove the measurement, touch **Clear All**.
Measurement Accuracy

You can use the ultrasound system to make measurements on ultrasound images. The measurements are then used with other clinical data to make a diagnosis.

Making a diagnosis based solely on measurements is not recommended. There are numerous factors to consider when using quantified data from any ultrasound imaging system. A careful analysis of those factors indicates that the accuracy of each measurement is highly dependent on image quality. Image quality in turn is highly dependent on system design, operator scanning technique, familiarity with system controls, and, most important, patient echogenicity.

WARNING

System users are responsible for image quality and diagnosis. Inspect the data that is being used for the analysis and diagnosis and ensure that the data is sufficient both spatially and temporally for the measurement approach being used.

Measurement Accuracy Tables

2D Measurement Range and Accuracy

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Accuracy</th>
<th>Maximum Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Distance</td>
<td>≤ ± 2% or 2 mm</td>
<td>>30.0 cm</td>
</tr>
<tr>
<td>Lateral Distance</td>
<td>≤ ± 2.5% or 3 mm</td>
<td>>40.0 cm</td>
</tr>
<tr>
<td>Diagonal Distance</td>
<td>≤ ± 2% or 2 mm</td>
<td>>32.0 cm</td>
</tr>
</tbody>
</table>

M-Mode Measurement Range and Accuracy

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Accuracy</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>≤ ± 2% or 1 mm</td>
<td>0.003 to >30 cm</td>
</tr>
<tr>
<td>Time</td>
<td>≤ ± 2% of time or 4 ms measurement</td>
<td>0.002 to >2.5 s</td>
</tr>
<tr>
<td>Slope</td>
<td>≤ ± 0.2 cm/sec or ± 1%</td>
<td>--</td>
</tr>
</tbody>
</table>
Performing Fetal Analysis

You can perform fetal analysis from the current exam. The Fetal Age Summary is saved in the patient exam, and is available in the Review display (see “Viewing the Fetal Age Summary” on page 128).

WARNING

You are solely responsible for custom measurements and calculations and the accuracy of elements entered into the equations.

1. If necessary, touch the page indicator (▶️ or ◀️) or swipe to display Fetal Age.

2. Touch Fetal Age.

3. Obtain the 2D image you want to measure and touch .

4. Touch a system-defined fetal age or growth measurement.

5. For HC and AC, using the control points, drag the ellipse into position in the imaging area, and then touch Confirm Measurement.

6. For FL and BPD, drag the calipers into position in the imaging area, and then touch Confirm Measurement.

NOTE

If you drag a measurement caliper out of the image area, the caliper may disappear. To restore the caliper position, touch Measure, touch Clear All, and then touch Measure and add the Ellipse or Distance measurement again.
7. For LMP/EDD, select the EDD date from the calendar. The LMP(c) date is automatically calculated based on your selection.
 • To switch to the next or previous weeks or months, swipe up or swipe down from the calendar.
 • To save the LMP/EDD measurement, touch OK.
 • To return to the Fetal Age menu without saving the LMP/EDD measurement, touch Skip.

8. To expand or collapse the Fetal Age Summary, in portrait orientation, touch or .

Ending an Exam

WARNING

Failing to end the current exam before starting a new exam can result in data being acquired and stored under the wrong patient name. If you turn off the system without ending the exam, the system pauses the exam before shutting down.

You must end the exam before you can export the exam or e-mail images from the exam. You cannot end an exam while in Review.

You will not be able to end the exam until the system has saved exam data for the current exam. (The system saves exam data when you acquire an image.) Ending an exam stores all exam data, clears the Patient Info form, and prepares for the next exam.

The system automatically ends an exam if it has been open for longer than 24 hours. You cannot append images to an ended exam.

When the exam is complete, touch End Exam at the top of the imaging display.
7 Review

In the **Review** display, you can view and delete images and loops from the current exam or from saved exams. You can also export or e-mail images from Review. You must end the exam before you can export the exam or e-mail images from the exam. You cannot end an exam while in Review.

Starting Review During an Exam

To start Review during an exam:

1. Touch ✎, and then touch **Review Exam**.
2. To exit **Review** and return to the current exam, touch ✎, and then touch **Current Exam**.

Starting Review After an Exam

To start Review from the **Scan/Create Patient** display:

1. Touch ✎, and then touch **Saved Exams**.
2. To view an exam, select it from the list.
3. To exit **Review** and return to the **Scan/Create Patient** display, touch ✎, and then touch **Current Exam**.
Navigating Thumbnails and Images

In Review, small images, called thumbnails, appear on the side or bottom of the Review display, depending on the screen orientation. From these thumbnails, you can display one or more images and loops in their original format.

- To view a full-size image or loop, touch a thumbnail.
- To scroll through the available thumbnails, drag the thumbnails left or right, or up or down, depending on the screen orientation.

Viewing the Fetal Age Summary

In Review, if you performed fetal analysis during an exam, Summary appears on the upper right corner of the Review display.

1. Touch Summary to view the Fetal Age Summary.
2. Touch Done to close the Fetal Age Summary and return to the Review display.

Playing Loops

Loops are identified by the icon located in the bottom right corner of the thumbnail.

1. Touch the loop thumbnail.
2. Use the loop controls that appear beneath the loop.

Loop Controls

1. Play control. Touch to play the loop at normal speed or to pause the loop.
2. Step back control. Touch to step a single frame backward.
Exporting Images and Loops

You must end the exam before you can export the exam or e-mail images from the exam.

You can use one of the supported e-mail clients on the device to e-mail the following:

- Images
- Loops
- Fetal Age Summary (if created)

You can also export images, loops, and the Fetal Age Summary from the system to a configured network destination.

E-mailing Images and Loops

WARNING

It is your responsibility to ensure that the security of your device and the protection of patient data meet your local security policies and regulatory requirements. Before e-mailing images and loops, consult your healthcare IT security department to ensure that you are in compliance with your department's specific policies and regulations regarding the handling of patient information. For more information, see Shared Roles for System and Data Security on your User Information CD or in the Support section of the Lumify website (www.philips.com/lumify).

You may need to set up an e-mail client on the device before you can e-mail images. For setup instructions, see the following website and search for "configure email client":

3 Step forward control. Touch to step a single frame forward.
4 Loop time line. Drag to cycle through the loop at the specified loop speed. When the loop is paused, you can drag the line to a specific frame.
https://support.google.com

If several e-mail accounts are available on the device, the system prompts you to select from a list of the available accounts. You can select any e-mail account available to you regardless of which e-mail account is associated with your Reacts account.

The system e-mails still images and the **Fetal Age Summary** in PNG format. The system e-mails loops in MP4 format.

1. Touch 📩, and then touch **Saved Exams 📦**.
2. Touch a saved exam to open it in **Review**.
3. In the **Review** display, do one of the following:

 • To e-mail all of the exam's images, touch **Export Exam 🔄**.
 • To e-mail select images and loops, touch and hold a thumbnail. A check mark with **Done** appears in the upper left corner of the imaging display. Touch additional images and loops to add them to the e-mail. Touch **Export Selected 🔄**.
4. Touch **Email**.
5. If the **Pick an Email Application to Use** dialog box appears, touch to select an e-mail application from the list, and then do any of the following:

 • Touch **Just Once** to only use the selected e-mail application during the current export. The **Pick an Email Application to Use** dialog box appears until **Always** is selected.
 • Touch **Always** to set the selected e-mail application as the default.
6. Touch **Continue** to accept the content of the privacy notice. The device's default e-mail account opens and displays a new message with the images attached.
7. Add recipients and text to the e-mail and send the e-mail. The images, loops, and the **Fetal Age Summary** are automatically attached to the e-mail.

Exporting Images and Loops to a Network Destination

You can export images, loops, and the **Fetal Age Summary** to a DICOM PACS, to a network share, or to a local directory. The system exports still images, loops, and the **Fetal Age Summary** in **RLE (Lossless)** or **JPEG (Lossy)** format.
Deleting Images and Loops

You can add, edit, copy, rename, or delete an export destination (see “Configuring Export Destinations” on page 134 and “Editing Export Destinations” on page 137).

1. Touch , and then touch Saved Exams.
2. Touch a saved exam to open it in Review.
3. In the Review display, do one of the following:
 - To export all of the exam's images, touch Export Exam.
 - To export select images, touch and hold a thumbnail image. A check mark with Done appears in the upper left corner of the imaging display. Touch additional images to add them to the export. Touch Export Selected.
4. To add a new destination, touch Add New. For more information, see “Configuring Export Destinations” on page 134.
5. If an export destination profile has previously been created, touch to select it from the Export Selected menu, and the images, loops, and Fetal Age Summary export automatically.

NOTE
After you create a new export destination, it will be saved on the system and appear in the Export Selected menu. Touch to select a saved export destination, and the images export automatically.

Deleting Images and Loops

1. In the Review display, touch and hold a thumbnail image. A check mark with Done appears in the upper left corner of the imaging display. Touch additional images to delete more than one image.
2. Touch Delete.
3. Touch **Yes** to confirm the deletion.

Exporting Exams

You can export exams to a DICOM PACS, to a network share, or to a local directory. See “Configuring Export Destinations” on page 134.

You must end the exam before you can export the exam or e-mail images from the exam.

For exams exported to a DICOM PACS, the system uses the following formats:

- For still images and the **Fetal Age Summary**, JPG or RLE format
- For loops, JPG or RLE Ultrasound Multi-Frame Image format

For exams exported to a network share or to a local directory, the system uses the following formats:

- For still images and the **Fetal Age Summary**, PNG format
- For loops, MP4 format

1. Touch 📒, and then touch **Saved Exams** 📒.
2. Touch and hold an exam until **Selected Exams** appears.
3. Do one of the following:

 - To export a single exam, touch it to open it in **Review**, and then touch **Export Exam** 📒.
 - To export one or more exams, touch and hold additional exams, and then touch **Export** 📒.

 - To export all of the exams, touch **Select All** 📒, and then touch **Export** 📒.

4. Select a destination from the **Export** 📒 menu. (To add a new destination, select **Add New**.

 For more information, see “Configuring Export Destinations” on page 134.)

A confirmation message appears when the export is complete.
Showing or Hiding Patient Data on Exported Images and Loops

You can choose to show or hide patient information on images and loops that you export to a DICOM server, to a network share, or to a local directory. By default, the system includes patient data when you export to a network share or to a local directory, and removes patient data when you export to a DICOM server.

1. Touch and select Export Destinations.
2. Select the export destination for which you want to specify that patient data be shown or hidden (if you need to add an export destination, see “Configuring Export Destinations” on page 134).
3. Select Show Advanced Options.
4. Do one of the following:
 • To show patient information on exported images and loops, select Include Patient Data on Each Image.
 • To hide patient information on exported images and loops, deselect Include Patient Data on Each Image.

Deleting Exams

After you have exported exams, you can delete them to save space on the system.

1. Touch , and then touch Saved Exams.
2. Touch and hold an exam until Selected Exams appears.
3. Do one of the following:
 • To delete the selected exam, touch Delete.
 • To delete multiple exams, touch and hold to select additional exams and then touch Delete.
• To delete all exams, touch Select All and then touch Delete.

4. In the Delete Confirmation dialog box, touch Yes.

Configuring Export Destinations

You can export exams to a DICOM PACS, to a network share, or to a local directory.

1. Touch , and then touch Export Destinations.
2. Touch Add New.
3. In the Add New Destination dialog box, type a Destination Nickname and select a Destination Type. Touch Continue.

NOTE
The name entered for Destination Nickname appears in the Export Destinations list.

NOTE
If you rotate your device while settings are selected in the Add New Destination dialog box or when you are editing an export destination, the system does not save your selections. To avoid this situation, do not rotate your device while adding or editing export destinations.

4. Configure destination settings (see “Export Destination Settings” on page 135).
5. To test the connection to the export destination, touch Test.
6. To save the export destination, touch Save.
7. To specify a default export destination, select an option from the Upon Exam Completion, Automatically Export Loops and Images To menu.
Export Destination Settings

DICOM Destination Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumify AE Title</td>
<td>The AE title for the device</td>
</tr>
<tr>
<td>Remote AE Title</td>
<td>The AE title for the server</td>
</tr>
<tr>
<td>Hostname or IP Address</td>
<td>Use a DNS or a static IP address</td>
</tr>
<tr>
<td>Port</td>
<td>The port number for the server</td>
</tr>
<tr>
<td>Export Format</td>
<td>RLE (Lossless) or JPEG (Lossy)</td>
</tr>
<tr>
<td>Advanced Options, Display Compensation</td>
<td>Brightness and Contrast</td>
</tr>
<tr>
<td>Advanced Options, Include Patient Data on Each Image</td>
<td>Adds patient information to exported images and loops (by default, this option is deselected).</td>
</tr>
</tbody>
</table>

Advanced Options, Advanced Connection Settings

- DNS Suffix
- Read Timeout (Sec): The network reply timeout
- Connection Timeout (sec): The DICOM ARTIM timeout
- Retry Interval (sec): How much time the system will wait before retrying a job to the server
- Max Retries: How many retries the system will perform before failing the job

Network Share Destination Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>The IP address or computer name of the server hosting the network share</td>
</tr>
<tr>
<td>User</td>
<td>The domain and user name for the network share</td>
</tr>
<tr>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Password</td>
<td>The password for the network share</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>The path to the network share</td>
</tr>
<tr>
<td>Exported Filename Syntax</td>
<td>The order in which you select file name fields reflects the order that the field appears in the folder name for the exported content and is reflected in Example Export Path. For example, if you select Last and then MRN, the folder name will begin with the Last name, followed by the MRN.</td>
</tr>
<tr>
<td>Advanced Options, Image Resolution</td>
<td>Choose a resolution that matches the display on which the exam will be viewed</td>
</tr>
<tr>
<td>Advanced Options, Include Patient Data on Each Image</td>
<td>Deselect to remove patient information from exported images and loops (by default, this option is selected).</td>
</tr>
<tr>
<td>Advanced Options, Display Compensation</td>
<td>Brightness and Contrast</td>
</tr>
</tbody>
</table>
| Advanced Options, Advanced Connection Settings | • DNS Suffix
• Retry Interval (sec): How much time the system will wait before retrying a job to the server
• Max Retries: How many retries the system will perform before failing the job |

Local Directory Destination Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
<td>Type the path to the folder in which you want to store exams</td>
</tr>
<tr>
<td>Exported Filename Syntax</td>
<td>The order in which you select file name fields reflects the order that the field appears in the folder name for the exported content and is reflected in Example Export Path. For example, if you select Last and then MRN, the folder name will begin with the Last name, followed by the MRN.</td>
</tr>
</tbody>
</table>
Editing Export Destinations

You can edit, copy, rename, or delete export destinations when the system is not exporting images or exams.

1. Touch \(\square \), and then touch **Export Destinations** \(\square \).

2. Do any of the following:

 - To edit the export destination, touch the export destination and use the keyboard to modify fields and options. Touch **Save**.

 - To delete the export destination, touch and hold the export destination until **Done** appears. Touch **Delete** \(\square \). Touch **Yes** to confirm the deletion.

 - To rename the export destination, touch and hold the export destination until **Done** appears. Touch **Rename** \(\square \). In the **Rename Destination** dialog box, type a new destination nickname for the destination and touch **Rename** \(\square \).

 - To copy an export destination, touch and hold the export destination until **Done** appears. Touch **Copy** \(\square \). In the **Copy Destination** dialog box, type a name for the new destination and touch **Copy** \(\square \).

Table: Advanced Options

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Options, Image Resolution</td>
<td>Choose a resolution that matches the display on which the exam will be viewed</td>
</tr>
<tr>
<td>Advanced Options, Include Patient Data on Each Image</td>
<td>Deselect to remove patient information from exported images and loops (by default, this option is selected).</td>
</tr>
<tr>
<td>Advanced Options, Brightness and Contrast</td>
<td></td>
</tr>
<tr>
<td>Advanced Options, Display Compensation</td>
<td></td>
</tr>
</tbody>
</table>
Viewing the Export Queue

The export queue displays the progress of exported exams and images. You can configure the number of export retries and the retry interval when you configure an export destination (see “Export Destination Settings” on page 135).

1. Touch 🔄, and then touch **Export Queue** 🔄. If a job is in progress, the system displays it along with a status, the destination, and information about its progress.

2. If a job has failed or if you want to see details about the job while it is in progress, touch it. In the **Job Details** dialog box, do any of the following:
 - To view or edit the export destination, touch **View Destination Details**.
 - To retry the job, touch **Retry Job**.

Enabling DICOM Logging

You can enable DICOM logging to troubleshoot DICOM connectivity issues. DICOM logging is an advanced feature for IT professionals.

1. Do one of the following:
 - Touch 🔄, touch **Export Queue** 🔄, and then touch 🔄.
 - Touch 🔄, touch **Export Destinations** ⬆️, and then touch 🔄.

2. To start logging, touch **Start DICOM Logging**. To stop logging, touch **Stop DICOM Logging**.

3. To view logs, touch **View Logs From [Date and Time]**.

4. To delete logs, touch **Delete DICOM Logs**.
8 Transducers

The transducer is the most important factor in image quality. Optimal imaging cannot be obtained without the correct transducer. The system is optimized for use based on your transducer selection.

Transducer Safety

WARNING
Use only Philips transducers and Philips-approved biopsy guides, covers, brackets, supplies, components, and accessories. Other brands may not properly fit Philips transducers. Improper installation may result in patient injury.

WARNING
Always remove the transducer from the patient before defibrillation.

WARNING
To limit potential harm when scanning neonatal, pediatric, and medicated patients, minimize the time spent imaging at temperatures above 41°C (106°F).

The system limits patient contact temperature to 43°C (109°F), and acoustic output values to their respective U.S. Food and Drug Administration limits. A power-protection circuit protects against over-current conditions. If the power monitor protection circuit senses an over-current
condition, then the drive voltage to the transducer is shut off immediately, preventing overheating of the transducer surface and limiting acoustic output. Validation of the power protection circuit is done under normal system operation.

Presets and Transducers

These are the presets for the transducers that are compatible with your ultrasound system.

System Transducers and Supported Presets

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Presets</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5-2</td>
<td>Abdomen, Gallbladder, Lung, OB/GYN</td>
</tr>
<tr>
<td>L12-4</td>
<td>Lung, MSK, Soft Tissue, Superficial, Vascular</td>
</tr>
<tr>
<td>S4-1</td>
<td>Abdomen, Cardiac, FAST, Lung, OB/GYN</td>
</tr>
</tbody>
</table>

Transducer Maintenance

Inspect the transducer, cable, and lens before each use. Check for cracks or other damage that jeopardizes the integrity of the transducer. Report any transducer damage to your authorized service representative, and discontinue use of the transducer.

For all information on transducer cleaning and disinfection, including information on compatible disinfectants, see *Care and Cleaning of Ultrasound Systems and Transducers, Disinfectants and Cleaning Solutions for Ultrasound Systems and Transducers*, and the Philips Transducer Care website:

www.philips.com/transducercare

If you encounter poor image quality or transducer problems, see “Troubleshooting” on page 152.
Acoustic Artifacts

The transducer adds its own signature to the echo information in the form of beam width effects, axial resolution limitations, and frequency characteristics. The control choices made by the sonographer that affect amplification, signal processing, and echo signal display can lead to significant differences in the displayed appearance of echo data. Following is a brief discussion of acoustic artifacts. An understanding of the physical basis for the production of signals displayed on ultrasound images is helpful in minimizing artifacts on images and interpreting the results of studies.

An artifact is an echo displayed in a different position than its corresponding reflector in the body. Artifacts can also be caused by intervening tissue properties. Artifacts can originate from external noise, reverberations, multi-path reflections, or misadjusted equipment. They can also come from the ultrasonic beam geometry and unusual changes in beam intensity. Artifacts and their manifestations are listed below, and following are some definitions of various artifacts.

- Added objects displayed as speckle, section thickness, reverberation, mirror image, comet tail, or ring down
- Missing objects due to poor resolution
- Incorrect object brightness due to shadowing or enhancement
- Incorrect object location due to refraction, multi-path reflections, side lobes, grating lobes, speed error, or range ambiguity
- Incorrect object size due to poor resolution, refraction, or speed error
- Incorrect object shape due to poor resolution, refraction, or speed error
Acoustic saturation occurs when received signals reach a system's high-amplitude limit. At that point the system becomes unable to distinguish or display signal intensities. At the point of saturation, increased input will not increase output.

Aliasing occurs when the detected Doppler frequency exceeds the Nyquist limit. It is characterized on the spectral display by the Doppler peaks going off the display, top or bottom, and then continuing on the other side of the baseline. On the Color display an immediate change in color from one Nyquist limit to the other is seen.

Comet tail is a form of reverberation artifact produced when two or more strong reflectors are close together and have a high propagation speed. In this case, sound does not travel directly to a reflector and back to the transducer; and a strong linear echo appears at the reflector and extends deeper than the reflector.

Enhancement is an increased relative amplitude of echoes caused by an intervening structure of low attenuation.

Focal enhancement, also known as **focal banding**, is the increased intensity in the focal region that appears as a brightening of the echoes on the display.

Mirror imaging artifact is most commonly seen around the diaphragm; this artifact results from sound reflecting off another reflector and back.

Mirroring is the appearance of artifacts on a spectral display when there is improper separation of forward and reverse signal processing channels. Consequently, strong signals from one channel mirror into the other.

Multi-path positioning and **refraction** artifacts describe the situation in which the paths to and from a reflector are different. The longer the sound takes traveling to or from a reflector, the greater the axial error in reflector positioning (increased range). Refraction and multi-path positioning errors are normally relatively small and contribute to general degradation of the image rather than to gross errors in object location.

Propagation speed errors occur when the assumed value for propagation speed by the ultrasound system is incorrect. If the actual speed is greater than that assumed, the calculated distance to a reflector is too small, and the reflector will be displayed too far from the transducer. Speed error can cause a structure to be displayed with incorrect size and shape.
Range ambiguity can occur when reflections are received after the next pulse is transmitted. In ultrasound imaging, it is assumed that for each pulse produced, all reflections are received before the next pulse is sent out. The ultrasound system calculates the distance to a reflector from the echo arrival time assuming that all echoes were generated by the last emitted pulse. The maximum depth to be imaged unambiguously by the system determines its maximum pulse repetition frequency.

Reverberation is the continuing reception of a particular signal because of reverberation rather than reflection from a particular acoustic interface. This phenomenon is analogous to the effect created by mirrors positioned on opposite walls when an object, a head for instance, is placed between the mirrors. The image of the head is reflected back and forth infinitely between the two mirrors, creating the optical illusion of multiple heads. Reverberations are easily identifiable, because they are equally spaced on the display.

Scattering is the diffuse, low-amplitude sound waves that occur when acoustic energy reflects off tissue interfaces smaller than a wavelength. In diagnostic ultrasound, Doppler signals come primarily from acoustic energy back-scattered from red blood cells.

Shadowing is the reduction in echo amplitude from reflectors that lie behind a strongly reflecting or attenuating structure. This phenomenon occurs when scanning a lesion or structure with an attenuation rate higher than that of the surrounding tissue. The lesion causes a decrease in beam intensity, which results in decreased echo signals from the structures beyond the lesion. Consequently, a dark cloud behind the lesion image forms on the display. This cloud, or shadow, is useful as a diagnostic clue.

Side lobes (from single-element transducers) and grating lobes (from array transducers) cause objects that are not directly in front of the transducer to be displayed incorrectly in lateral position.

Speckle appears as tissue texture close to the transducer but does not correspond to scatterers in tissue. It is produced by ultrasound wave interference and results in general image degradation.

Spectral broadening is a display phenomenon that occurs when the number of energy-bearing Fourier frequency components increases at any given point in time. As a consequence, the spectral display is broadened. Spectral broadening can indicate the disturbed flow caused by a lesion, and therefore it is important diagnostically. However, broadening can also result from interaction between flow and sample volume size, in which case it is an artifact.
Speed of sound artifacts occur if the sound propagation path to a reflector is partially through bone, and the speed of sound is greater than in the average soft tissue. Echo position registration artifacts will be produced. Reflectors appear closer to the transducer than their actual distance because of this greater speed of sound, resulting in a shorter echo transit time than for paths not containing bone.

Transducer Covers

To prevent contamination by blood-borne pathogens, sterile transducer covers are required for needle guidance procedures. Philips recommends the use of qualified covers.

For procedures for using transducer covers, see the instructions provided with the covers.

WARNING

Latex and talc are commonly used in sheaths marketed to help with infection control during biopsies. Examine the packaging to confirm latex and talc content. Studies have shown that patients can experience allergic reactions with natural rubber latex. See the FDA Medical Alert, March 29, 1991, reprinted in “FDA Medical Alert on Latex” on page 41.

WARNING

Sterilized transducers should be used with sterile gel and a sterile transducer cover.

WARNING

Inspect transducer covers before and after use.
WARNING
Do not apply the transducer cover until you are ready to perform the procedure.

WARNING
Sterile transducer covers are disposable and must not be reused.

Ultrasound Transmission Gels
For proper transmission of the acoustic beam, use the ultrasound transmission gel supplied by or recommended by Philips, or another glycol-, glycerol-, or water-based acoustic coupling medium.

CAUTION
Do not use lotion-based products or gels that contain mineral oil. Such products may damage the transducer and void the warranty.

CAUTION
Do not use hand sanitizing gels.

CAUTION
Do not apply the transducer gel until you are ready to perform the procedure. Transducers should not be left soaking in gel.
CAUTION

Gels listed here are recommended because of their chemical compatibility with product materials.

Some recommended gels include:

- Aquasonic 100
- Aquasonic Clear
- Carbogel-ULT
- Scan

Transducer Storage

Use the appropriate guidelines for storing transducers for transport, and daily and long-term storage.

Storage for Transport

Always use the carrying bag that is provided with your transducer to transport the transducer from one site to another. Follow these guidelines to properly store transducers for transport:

- Make sure that the transducer is clean and disinfected before placing it in the carrying bag to avoid contaminating the bag
- Place the transducer in the bag carefully to prevent kinking of the cable.

Daily and Long-Term Storage

Follow these guidelines to protect your transducer:

- Avoid storing transducers in areas of temperature extremes or in direct sunlight.
• Store transducers separately from other instruments to avoid inadvertent transducer damage.
• Before storing transducers, make sure they are thoroughly dry.

Testing Transducers

You can run transducer tests to diagnose image quality and transducer issues.

1. Make sure that your device is connected to a wireless or cellular network.
2. Connect the transducer to your device.
3. Make sure that the transducer lens is clean, dry, and not touching anything.
4. If needed, start the Lumify app.
5. Touch and then touch **Settings**.

The system runs a series of tests and then sends the logs to Philips Remote Services. If your device is not connected to a wireless or cellular network, the logs are queued until you have network connectivity. For more information, contact your Philips representative or visit the Lumify website:

www.philips.com/lumify
9 System Maintenance

You should perform system maintenance regularly and as needed. Because the system is a piece of medical equipment, Philips recommends that only trained personnel service the system.

WARNING

Always use protective eyewear and gloves when cleaning, disinfecting, or sterilizing any equipment.

CAUTION

Follow all instructions provided to avoid damage during cleaning, disinfection, and sterilization. Failure to do so could void your warranty.

Transducer Care

CAUTION

Do not apply adhesive films, such as Tegaderm, to the transducer lens. Application of such films can damage the lens.

All Philips transducers require proper care, cleaning, and handling. Reasonable care includes inspection, cleaning, and disinfection or sterilization. Transducers must be cleaned and disinfected or sterilized after each use. You must also carefully inspect all parts of the
transducer before each use. Check for cracks or other damage that jeopardizes the integrity of the transducer. Report any damage to your Philips representative and discontinue use of the transducer.

For detailed instructions on how to clean, disinfect, and maintain each type of transducer used with the system, including disinfectant compatibility, see Care and Cleaning of Ultrasound Systems and Transducers and Disinfectants and Cleaning Solutions for Ultrasound Systems and Transducers. Information on compatible disinfectants is also available at:

www.philips.com/transducercare

Device Maintenance

WARNING

If the system becomes contaminated internally with bodily fluids containing pathogens, you must immediately notify your Philips service representative. Components inside the system cannot be disinfected. In that case, the system must be disposed of as biohazardous material in accordance with local or federal laws.

It is important to clean and maintain the ultrasound system and peripherals. Thorough cleaning is important for pieces of peripheral equipment, because they contain electromechanical devices. If exposed to constant and excessive environmental dust and humidity, these devices will suffer in both performance and reliability.

It is your responsibility to appropriately clean and disinfect your device in accordance with the device manufacturer's instructions and with your institution's policies for cleaning and disinfecting of medical devices.
Transducer Maintenance

Inspect the transducer, cable, and lens before each use. Check for cracks or other damage that jeopardizes the integrity of the transducer. Report any transducer damage to your authorized service representative, and discontinue use of the transducer.

For all information on transducer cleaning and disinfection, including information on compatible disinfectants, see *Care and Cleaning of Ultrasound Systems and Transducers, Disinfectants and Cleaning Solutions for Ultrasound Systems and Transducers*, and the Philips Transducer Care website:

www.philips.com/transducercare

If you encounter poor image quality or transducer problems, see “Troubleshooting” on page 152.

CAUTION

Some ultrasound coupling gels, as well as some solutions for pre-cleaning, disinfecting, and sterilizing can damage a transducer. Before using a gel or solution on a transducer, see “Ultrasound Transmission Gels” on page 145 and *Disinfectants and Cleaning Solutions for Ultrasound Systems and Transducers* or the Philips Transducer Care website: www.philips.com/transducercare. You can also contact your authorized service representative. For contact information, see “Customer Service” on page 20.

Sending System Logs

The Lumify app sends system logs to Philips periodically. System logs include Reacts errors. You can explicitly send system logs to Philips in case of a system problem. For information about privacy, see the Lumify Privacy Notice (touch , touch About, and then touch Privacy Notice).

1. Touch , and then touch Settings .
2. In System Logs, touch Send Logs.
The system uploads the logs and notifies you when the upload has completed.

Viewing Audit Logs

Audit logs record the following information about access to patient data:

- When exams began and ended
- When exams and images were viewed
- When exams and images were exported or deleted
- When images were sent by e-mail

1. Touch and select **Settings**.
2. In **Audit Logs**, touch **View Audit Logs**.
3. Select an audit log from the list.
4. If prompted, choose an application that can display plain text files in which to view the log.

Troubleshooting

If you encounter difficulty in the operation of the system, use the information provided in this topic and at the Lumify website:

www.philips.com/lumify

If you still have questions, contact your Philips representative.

The troubleshooting table contains a list of symptoms and the actions to take to correct the problems.
Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system does not power up.</td>
<td>Verify that the device is fully charged.</td>
</tr>
<tr>
<td>The system spontaneously reverts to the Scan/Create Patient display.</td>
<td>Verify that the device is fully charged.</td>
</tr>
<tr>
<td>The system does not recognize a connected transducer.</td>
<td>Disconnect the ultrasound USB cable from the transducer and connect a standard Type A to Micro B USB cable. Connect the temporary cable and the transducer to a Windows PC. Open the Device Manager. If the transducer is working properly, PiUsb appears in Other Devices. If you do not see PiUsb, contact your Philips representative for a replacement transducer or cable.</td>
</tr>
<tr>
<td>The system continuously reinitializes the transducer when attempting to image.</td>
<td>Verify that the device is fully charged.</td>
</tr>
<tr>
<td>Registration fails.</td>
<td>Make sure that you have constant wireless or cellular network connectivity throughout the registration process, and make sure that the transducer cable is firmly connected to your device. If you are still unable to register, see “Troubleshooting Connectivity Issues” on page 154.</td>
</tr>
<tr>
<td>Lumify or Reacts will not connect to your wireless or cellular network.</td>
<td>Verify that the system has access to your wireless or cellular network. If you are still not able to connect, see “Troubleshooting Connectivity Issues” on page 154.</td>
</tr>
</tbody>
</table>
Error Messages

The system displays error messages in response to operating or error conditions detected by the system.

The error messages must be noted and reported to your Philips representative.

Troubleshooting Connectivity Issues

After you have verified that the system has access to your wireless or cellular network, contact your network administrator or IT representative to ensure that the following domains, IP addresses, and ports are whitelisted on your network.

Registration and Normal Use

<table>
<thead>
<tr>
<th>DNS</th>
<th>IP Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>api.lumify.philips-healthsuite.com, reacts.lumify.philips-healthsuite.com</td>
<td>52.211.142.146</td>
<td>TCP 443</td>
</tr>
<tr>
<td></td>
<td>54.76.77.83</td>
<td></td>
</tr>
</tbody>
</table>

Sending Logs

<table>
<thead>
<tr>
<th>DNS</th>
<th>IP Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.ecdinterface.philips.com</td>
<td>162.13.31.14</td>
<td>TCP 443</td>
</tr>
</tbody>
</table>

Verifying Network Access to Reacts

To verify that your network allows access to Reacts, go to the following website:

https://svc.iitreacts.com/api/echo

If you see the message `{“Version”:””,“Body”:“Echo OK!”,“Type”:”System.String”,“Time”:”[28 digit time]”,“Id”:”[36 character ID]”}`, check the Lumify website (www.philips.com/lumify) for frequently asked questions (FAQs), or call your local Philips representative for assistance.

Although receiving this message confirms that you are connected to the network and your institution allows access to Reacts, there continues to be a problem.
If you do not see the message, contact your network administrator or IT representative to ensure that the following domains, IP addresses, and ports are whitelisted on your network:
Troubleshooting Connectivity Issues

DNS

<table>
<thead>
<tr>
<th>DNS</th>
<th>IP Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>*.iitreacts.com, *.reacts.com</td>
<td>69.90.8.45</td>
<td>TCP 443</td>
</tr>
<tr>
<td></td>
<td>69.90.8.46</td>
<td>UDP 443</td>
</tr>
<tr>
<td></td>
<td>69.90.8.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69.90.8.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69.90.9.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69.90.8.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.94.74.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.94.74.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.94.74.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.94.74.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69.90.8.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.94.74.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.94.74.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.94.74.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.242.34.249</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.242.38.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.242.38.188</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.242.25.169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.235.47.123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.242.28.128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.242.21.129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.235.43.213</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.235.44.190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.235.42.129</td>
<td></td>
</tr>
</tbody>
</table>
For Assistance

If you are unable to correct a problem, see the Lumify website:
https://www.usa.philips.com/healthcare/resource-catalog/feature-detail/ultrasound-lumify-global-resources

The Lumify website includes a list of frequently asked questions (FAQs) that can help you troubleshoot problems.

If you still have questions, call your Philips representative.

<table>
<thead>
<tr>
<th>DNS</th>
<th>IP Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52.235.42.238</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52.235.44.47</td>
<td></td>
</tr>
</tbody>
</table>
10 References

Area and Circumference from Ellipse

The formula for area and circumference from ellipse via Beyer, where \(d_1 \) and \(d_2 \) are the two axes of the ellipse, is

\[
\pi \left(\frac{d_1}{2} \right) \left(\frac{d_2}{2} \right)
\]

Area from Ellipse

\[
2\pi \sqrt{\frac{d_1^2 + d_2^2}{2}}
\]

Circumference from Ellipse

Gestational Age (Fetal Age)

The formula for gestational age (wk+day) via Hadlock, using abdominal circumference (AC range: 4.93 to 38.0 cm) is

\[
8.14 + 0.753(AC) + 0.0036(AC^2)
\]

Given the head circumference (HC range: 5.41 to 35.8 cm), the formula for gestational age via Hadlock, GA(HC)Hadl (in weeks) is

\[
8.96 + 0.540(HC) + 0.0003(HC^2)
\]

The formula for gestational age (in weeks) via Hadlock, using biparietal diameter (cm) (BPD range: 1.4 to 10.17 cm) is

\[
9.54 + 1.482(BPD) + 0.1676(BPD^2)
\]
The formula for gestational age (in weeks) via Hadlock, using femur length (FL in cm, range: 0.616 to 8.2 cm) is

$$10.35 + 2.460(FL) + 0.170(FL^2)$$

Estimated Due Date (EDD)

The estimated due date given the last menstrual period (LMP) equation is calculated using the following formula:

$$LMP + 40 \text{ weeks}$$

Last Menstrual Period (LMP)

The last menstrual period given the estimated due date (EDD) equation is calculated using the following formula:

$$EDD - 40 \text{ weeks}$$

Estimated Fetal Weight (EFW(BPD, HC, AC, FL))

The formula for the estimated fetal weight (EFW) in grams, from biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) and femur length (FL) all in centimeters via Hadlock is

$$10^{(1.3596-(0.00386AC \times FL) + (0.00064HC) + (0.000618BPD \times AC) + (0.0424 \times AC) + (0.174 \times FL))}$$

Normal ranges are grouped by EFW as percent of EFW and a gram offset.

11 Specifications

The Lumify system conforms to the following specifications.

System Specifications

Gray Shades
256 in 2D and M-mode

Scan Lines
Up to 1,024 scan lines

Service Life
The service life of the Lumify transducers is 10 years.

Pressure, Humidity, and Temperature Limits
These limits apply only to the Philips Lumify transducers, not to the Android device on which you run the Lumify app. It is your responsibility to select a Lumify-compatible device that meets the needs of your clinical environment. For information about your device's environmental specifications, consult the documentation that accompanies your device.

Operating, Transient, and Storage Limits

<table>
<thead>
<tr>
<th></th>
<th>Operating Limits</th>
<th>Transient Operating Limits</th>
<th>Storage Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>700 hPa (525 mmHg) to 1060 hPa (795 mmHg)</td>
<td>--</td>
<td>500 hPa (375 mmHg) to 1060 hPa (795 mmHg)</td>
</tr>
<tr>
<td>Humidity</td>
<td>15% to 95% non-condensing</td>
<td>15% to 95% relative humidity</td>
<td>15% to 95% relative humidity</td>
</tr>
<tr>
<td>Temperature</td>
<td>0°C (32°F) to 40°C (104°F)</td>
<td>-20°C (-4°F) to 50°C (122°F)</td>
<td>-34°C (-29°F) to 70°C (158°F)</td>
</tr>
</tbody>
</table>
Safety and Regulatory Requirements

Classification

• Device with transducers: Internally powered ME equipment. Transducers: Type BF applied parts, IP47
• Ordinary Equipment/Continuous Operation
• Non-AP/APG

Electromechanical Safety Standards Met

The transducers and software comply with the requirements of IEC 60601-1 Medical Electrical Equipment, General Requirements for Safety, including all applicable collateral and particular standards, as well as all applicable deviations. System users are responsible for ensuring that the chosen device is compliant with the law in the jurisdiction in which the product is used.

Compliance

Philips products comply with relevant international and national standards and laws. Information on compliance will be supplied by your local Philips representative, or the manufacturer, on request.
Index

Numerics
2D
 distance measurements 122
 mode 116
2D ellipse measurements 123
2D mode
 using 116

A
Accessories 19
 electromagnetic compliance 62
Account and login 77
Accuracy, measurement 124
Acoustic artifacts 141
Acoustic coupling medium 145
Acoustic output
 limits 42
 measurement 52, 55
Acoustic output tables 15, 46, 55
Acquiring
 images 120
 loops 120
Adding labels 121
ALARA principle
 applying 42
 education program 42
 example 42
 related guidance documents 51
Allergic reactions to latex 41
Annotation 121
App updates 84

Artifacts 141
Assistance 20, 157
Audience, intended 12
Audit logs 77, 152
Auto detect 77, 91
AutoSCAN 119

B
Barcodes
 formats 92
 saving formats 92
 scanning 91
Batteries 22
Biological safety 39

C
Cables
 approved for electromagnetic compliance 61
 protecting from damage 33
Canceling subscription 84
Capabilities, system 72
Cautions, described 25
CD
 user information 15
Cellular networking 75
Centerline
 displaying 120
Cleaning
 device 150
 transducers 140, 151
Collaboration 99
Index

Color mode
 about 117
 using 117
Compatibility
 gels 145
 product 35
Compliance, electromagnetic
 approved accessories 62
 approved cables 61
 approved transducers 62
Components, system 76
Condensation 33
Connecting transducers 93
Connectivity profiles 93
Contraindications 74
Controls affecting MI and TI
 direct controls 42
 indirect controls 42
 receiver controls 42
Conventions
 user information 16
Covers
 transducer 144
Customer
 service 20
Customer information 77

D
Data
 storage 77
Date and time, setting 86
Defibrillation, electrical safety 29, 31
Deleting exams 133
Deleting images 131
Deleting loops 131
Deleting patient data 93
Deleting settings 93
Device class 28
Device requirements 71
Device reuse 20
DICOM
 logging 138
 DICOM export settings 135
Disinfecting
 device 150
 transducers 140, 151
Display
 avoiding damage 33
 Display orientation 77
Disposal of device 20
Distance measurements 122
Downloading app 81

E
Editing
 patient data 114
Electrical safety 28
Electromagnetic compatibility 58
Electromagnetic compliance
 approved accessories 62
 approved cables 61
 approved transducers 62
Electromagnetic emissions
 defined 58
 environment 61
Electromagnetic immunity
 defined 58
 system environment 63
Electromagnetic interference
 avoiding 69
 distance to transmitters 68
 types 66
Electrostatic discharge (ESD) 60
Electrosurgical units (ESUs) 30
Ellipse measurements 123
E-mailing Fetal Age Summary 129
E-mailing images 129
E-mailing loops 129
Ending exams 126
Entitlement 81
Equipment protection 33
Error messages 39, 154
ESD precautions 60
Estimated Due Date (EDD) 160
Estimated Fetal Weight 160
Exams
 deleting 133
 ending 126
 exporting 132
 quick 89
 restarting paused 115
 reviewing 114
 starting new 111
Explosion hazard 14, 28
Export
 patient data on images 133
Export destinations
 configuring 134
 editing 137
 settings 135
Export queue 138
Exporting exams 132
Exporting Fetal Age Summary 129
Exporting images 129
Exporting loops 129
F
FAQs 157
Fetal age 159
Fetal Age Summary
 e-mailing 129
 exporting 129
 viewing 128
Fire safety 32
Full-screen view 119
G
Gels
 compatibility 145
 recommendations 145
Gestational age 159
Gestures
 reference 16
Glutaraldehyde exposure 58
Gray shades specification 161
Index

H
Hazards
 electrical shock 28
 explosion 14, 28
 IEC symbols 35

I
Icons
 imaging display 86
 IEC symbols 35
 Image review 127
 Image updating, inconsistent 39
 Images
 acquiring 120
 deleting 131
 e-mailing 129
 exporting 129
 viewing full screen 119
 Imaging
 2D 116
 acoustic artifacts 141
 Color 117
 Color mode 117
 display 86
 features 119
 M-mode 118
 Imaging modes 115
 Indications for use 73
 Indices 46
 Infection control 58
 Installing app 81
 Intended audience 12
 Intended use 13

Interference 66, 69

L
Labels 121
 adding 121
Latex
 allergic reactions 41
Leakage current 29
Local directory export settings 135
Logging, DICOM 138
Logs
 audit 77, 152
 system 77, 151
Loops
 acquiring 120
 deleting 131
 duration 77
 e-mailing 129
 exporting 129
 playing 128

Magnification, zoom 119
Maintenance
 system 149, 150
 transducers 140, 151
Measurement tools 72
Measurement tools references 159
Measurements
 accuracy 124
 acoustic 52
 distance 122
 ellipse 123
 tools 72
 types 72
Mechanical index (MI) 46
 controls affecting 50
 display 46
 display precision and accuracy 46
 on-screen 46
Medical Ultrasound Safety 15
Messages, error 39, 154
MI 46
MI and TI accuracy estimates 46
M-mode 118
 using 118
Modality Worklist 96
 searching for exams 113
Modality worklist server
 adding 96
 deleting 97
 modifying 97

N
Navigating thumbnails and images 128
Network share export settings 135

O
On/Off control, system power 85
Operating notes 15
Operating temperature 33
Operator safety 57
Ordering supplies and accessories 19
Orientation, display 77
Output display 46
Output power 77
Output tables, acoustic 15, 46, 55
Overview, system 71

P
Pacemakers 29
Patient contact temperature 139
Patient data
 deleting 93
 editing 114
 exporting on images 133
 protecting 75
 security 75
Patient database 77
Performing an exam 111
Performing fetal analysis
 estimated fetal weight 125
 fetal age 125
 fetal growth 125
Permissions
 Lumify app 83
Philips contact information 20
Playing loops 128
Power (On/Off) control 85
Power saving 77
Power, output 77
Presets 140
Presets, changing 114
Problems, correcting 152
Index

Product compatibility 35
Protection against system damage 33

Q
Quick exams 89
Quick ID 89

R
Reacts
access codes 101
account and login settings 77
adding contacts 104
contact requests 105
contact status 104
creating user accounts 102
description 99
ending a session 106
logging in and out 103
managing contacts 104
muting and unmuting 108
pointer tool 106
removing contacts 104
searching contacts 104
session 105
session views 106, 107
sharing your device's camera 108
sharing your Lumify ultrasound image 109
Recycling the device 20

References
Area and Circumference from Ellipse 159
Estimated Due Date (EDD) 159
Estimated Fetal Weight 160
Estimated Fetal Weight (EFW) 159
Gestational Age (Fetal Age) 159
Last Menstrual Period (LMP) 159
measurement tool 159
Registered transducers 77
Registration, transducers 81, 82
Regulatory requirements 162
Remote collaboration 99
Repetitive strain injury 57
Requirements, device 71
Restrictions for use 70
Resuming a paused exam 115
Retrying export jobs 138
Review
displaying images 128
overview 127
starting 127
Index

<table>
<thead>
<tr>
<th>S</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>deleting 93</td>
</tr>
<tr>
<td></td>
<td>export destinations 135</td>
</tr>
<tr>
<td></td>
<td>system 77</td>
</tr>
<tr>
<td>acoustic output and measurement</td>
<td>Setsups 77</td>
</tr>
<tr>
<td>ALARA principle</td>
<td>Software updates 19</td>
</tr>
<tr>
<td>basic</td>
<td>Software version 79</td>
</tr>
<tr>
<td>biological</td>
<td>Solvents 33</td>
</tr>
<tr>
<td>defibrillators</td>
<td>Specifications</td>
</tr>
<tr>
<td>electrical</td>
<td>gray shades 161</td>
</tr>
<tr>
<td>electromagnetic emissions and immunity</td>
<td>safety requirements 162</td>
</tr>
<tr>
<td>electrosurgical units</td>
<td>scan lines 161</td>
</tr>
<tr>
<td>equipment protection</td>
<td>Starting new exams 111</td>
</tr>
<tr>
<td>fire</td>
<td>Starting review 127</td>
</tr>
<tr>
<td>general warnings</td>
<td>Static shock 60</td>
</tr>
<tr>
<td>guidance documents</td>
<td>Storage</td>
</tr>
<tr>
<td>mechanical index</td>
<td>access to 83</td>
</tr>
<tr>
<td>medical ultrasound</td>
<td>data 77</td>
</tr>
<tr>
<td>operator</td>
<td>Storing transducers 146</td>
</tr>
<tr>
<td>output display</td>
<td>daily and long-term 146</td>
</tr>
<tr>
<td>pacemakers</td>
<td>for transport 146</td>
</tr>
<tr>
<td>requirements</td>
<td>Subscription, canceling 84</td>
</tr>
<tr>
<td>symbols</td>
<td>Supplies 19</td>
</tr>
<tr>
<td>thermal index</td>
<td>Symbols</td>
</tr>
<tr>
<td></td>
<td>definitions 35</td>
</tr>
<tr>
<td></td>
<td>warning 14</td>
</tr>
<tr>
<td>Saved exams</td>
<td>System error messages 154</td>
</tr>
<tr>
<td>Scan lines specification</td>
<td>System Information 79</td>
</tr>
<tr>
<td>Scanning</td>
<td>System logs 77, 151</td>
</tr>
<tr>
<td>barcodes</td>
<td>System maintenance 149</td>
</tr>
<tr>
<td>Security</td>
<td>System settings 77</td>
</tr>
<tr>
<td>data</td>
<td>System upgrades 19</td>
</tr>
<tr>
<td>Separation distance</td>
<td></td>
</tr>
<tr>
<td>Serial number, transducer</td>
<td></td>
</tr>
<tr>
<td>Service, customer</td>
<td></td>
</tr>
</tbody>
</table>
Index

T
- Tables, acoustic output 15, 55
- Tablet identifier 79
- Technical support 157
- Testing transducers 147
- Tests
 - transducer 77
- Thermal index (TI) 46
 - controls affecting 50
 - display 77, 86
 - display precision and accuracy 46
 - displays 46
 - modes of operation 46
 - on-screen 46
 - using appropriate for application 46
- Thumbnails 128
- TI 46
- TI and MI values 50
- Time and date, setting 86
- Tools, measurement 72
- Touch gestures 16
- Transducer maintenance 140, 151

Transducers 139
- affecting TI and MI values 50
- care 140, 149, 151
- cleaning 140, 151
- connecting 93
- covers 144
- electromagnetic compliance 62
- gels compatibility 145
- humidity limits 161
- indications for use 73
- inspecting for damage 28
- maintenance 140, 151
- presets 140
- pressure limits 161
- registered 77
- registering 81, 82
- safety 139
- serial number 79
- service life 161
- storage, daily and long-term 146
- storage, for transport 146
- storing 146
- temperature limits 161
- testing 77, 147
- types 73

Troubleshooting 152

Turning the system on and off 85

Tutorial
- Lumify app 84
- Reacts option 100

U

Ultrasonic bioeffects, related documentation 51
Ultrasound transmission gel
 compatibility 145
 recommended 145
Updates, app 84
Upgrades, system 19
User information
 about 11
 components 15
 conventions 16
User Information CD 15

W
Walkthrough
 Lumify app 84
 Reacts option 100
Warning symbols 35
Warnings
 described 25
 general 14, 25
 symbols 14
Website 157
Website, Philips 20
Wi-Fi settings 77
Wireless networking 75
 Wi-Fi settings 77
Worklist 96
 searching for exams 113

Z
Zoom 119